66 research outputs found

    Experimental Determination of Momentum-Resolved Electron-Phonon Coupling

    Full text link
    We provide a novel experimental method to quantitatively estimate the electron-phonon coupling and its momentum dependence from resonant inelastic x-ray scattering (RIXS) spectra based on the detuning of the incident photon energy away from an absorption resonance. We apply it to the cuprate parent compound NdBa2_2Cu3_3O6_6 and find that the electronic coupling to the oxygen half-breathing phonon mode is strongest at the Brillouin zone boundary, where it amounts to 0.17\sim 0.17 eV, in agreement with previous studies. In principle, this method is applicable to any absorption resonance suitable for RIXS measurements and will help to define the contribution of lattice vibrations to the peculiar properties of quantum materials.Comment: 6 pages, 3 figure

    Energy and symmetry of dddd excitations in undoped layered cuprates measured by Cu L3L_3 resonant inelastic x-ray scattering

    Get PDF
    We measured high resolution Cu L3L_3 edge resonant inelastic x-ray scattering (RIXS) of the undoped cuprates La2_2CuO4_4, Sr2_2CuO2_2Cl2_2, CaCuO2_2 and NdBa2_2Cu3_3O6_6. The dominant spectral features were assigned to dddd excitations and we extensively studied their polarization and scattering geometry dependence. In a pure ionic picture, we calculated the theoretical cross sections for those excitations and used them to fit the experimental data with excellent agreement. By doing so, we were able to determine the energy and symmetry of Cu-3dd states for the four systems with unprecedented accuracy and confidence. The values of the effective parameters could be obtained for the single ion crystal field model but not for a simple two-dimensional cluster model. The firm experimental assessment of dddd excitation energies carries important consequences for the physics of high TcT_c superconductors. On one hand, having found that the minimum energy of orbital excitation is always 1.4\geq 1.4 eV, i.e., well above the mid-infrared spectral range, leaves to magnetic excitations (up to 300 meV) a major role in Cooper pairing in cuprates. On the other hand, it has become possible to study quantitatively the effective influence of dddd excitations on the superconducting gap in cuprates.Comment: 22 pages, 11 figures, 1 tabl

    Determining the Electron-Phonon Coupling in Superconducting Cuprates by Resonant Inelastic X-ray Scattering: Methods and Results on Nd1+x_{1+x}Ba2x_{2-x}Cu3_3O7δ_{7-\delta}

    Get PDF
    The coupling between lattice vibration quanta and valence electrons can induce charge density modulations and decisively influence the transport properties of materials, e.g. leading to conventional superconductivity. In high critical temperature superconductors, where electronic correlation is the main actor, the actual role of electron-phonon coupling (EPC) is being intensely debated theoretically and investigated experimentally. We present an in-depth study of how the EPC strength can be obtained directly from resonant inelastic x-ray scattering (RIXS) data through the theoretical approach derived by Ament et al. [EPL 95, 27008 (2011)]. The role of the model parameters (e.g. phonon energy ω0\omega_0, intermediate state lifetime 1/Γ1/\Gamma, EPC matrix element MM, and detuning energy Ω\Omega) is thoroughly analyzed, providing general relations among them that can be used to make quantitative estimates of the dimensionless EPC g=(M/ω0)2g = (M/\omega_0)^2 without detailed microscopic modeling. We then apply these methods to very high resolution Cu L3L_3 edge RIXS spectra of three Nd1+x_{1+x}Ba2x_{2-x}Cu3_3O7δ_{7-\delta} films. For the insulating antiferromagnetic parent compound the value of MM as a function of the in-plane momentum transfer is obtained for Cu-O bond-stretching (breathing) and bond-bending (buckling) phonon branches. For the underdoped and the nearly optimally doped samples, the effects of Coulomb screening and of charge-density-wave correlations on MM are assessed. In light of the anticipated further improvements of the RIXS experimental resolution, this work provides a solid framework for an exhaustive investigation of the EPC in cuprates and other quantum materials.Comment: 21 pages, 16 figure

    Determining the electron-phonon coupling in superconducting cuprates by resonant inelastic x-ray scattering: Methods and results on Nd1+xBa2-xCu3O7-δ

    Get PDF
    The coupling between lattice vibration quanta and valence electrons can induce charge-density modulations and decisively influence the transport properties of materials, e.g., leading to conventional superconductivity. In high-critical-temperature superconductors, where electronic correlation is the main actor, the actual role of electron-phonon coupling (EPC) is being intensely debated theoretically and investigated experimentally. We present an in-depth study of how the EPC strength can be obtained directly from resonant inelastic x-ray scattering (RIXS) data through the theoretical approach derived by Ament et\ua0al. [Europhys. Lett. 95, 27008 (2011)]. The role of the model parameters (e.g., phonon energy ω0, intermediate state lifetime 1/Γ, EPC matrix element M, and detuning energy Ω) is thoroughly analyzed, providing general relations among them that can be used to make quantitative estimates of the dimensionless EPC g=(M/ω0)2 without detailed microscopic modeling. We then apply these methods to very high-resolution Cu L3-edge RIXS spectra of three Nd1+xBa2−xCu3O7−δ films. For the insulating antiferromagnetic parent compound, the value of M as a function of the in-plane momentum transfer is obtained for Cu-O bond-stretching (breathing) and bond-bending (buckling) phonon branches. For the underdoped and the nearly optimally doped samples, the effects of Coulomb screening and of charge-density-wave correlations on M are assessed. In light of the anticipated further improvements of the RIXS experimental resolution, this work provides a solid framework for an exhaustive investigation of the EPC in cuprates and other quantum materials

    Zooming in on cerebral small vessel function in small vessel diseases with 7T MRI: Rationale and design of the “ZOOM@SVDs” study

    Get PDF
    Background: Cerebral small vessel diseases (SVDs) are a major cause of stroke and dementia. Yet, specific treatment strategies are lacking in part because of a limited understanding of the underlying disease processes. There is therefore an urgent need to study SVDs at their core, the small vessels themselves. Objective: This paper presents the rationale and design of the ZOOM@SVDs study, which aims to establish measures of cerebral small vessel dysfunction on 7T MRI as novel disease markers of SVDs. Methods: ZOOM@SVDs is a prospective observational cohort study with two years follow-up. ZOOM@SVDs recruits participants with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL, N = 20), sporadic SVDs (N = 60), and healthy controls (N = 40). Participants undergo 7T brain MRI to assess different aspects of small vessel function including small vessel reactivity, cerebral perforating artery flow, and pulsatility. Extensive work-up at baseline and follow-up further includes clinical and neuropsychological assessment as well as 3T brain MRI to assess conventional SVD imaging markers. Measures of small vessel dysfunction are compared between patients and controls, and related to the severity of clinical and conventional MRI manifestations of SVDs. Discussion: ZOOM@SVDs will deliver novel markers of cerebral small vessel function in patients with monogenic and sporadic forms of SVDs, and establish their relation with disease burden and progression. These small vessel markers can support etiological studies in SVDs and may serve as surrogate outcome measures in future clinical trials to show target engagement of drugs directed at the small vessels

    An Educational and Physical Program to Reduce Headache, Neck/Shoulder Pain in a Working Community: A Cluster-Randomized Controlled Trial

    Get PDF
    Background: Noninvasive physical management is often prescribed for headache and neck pain. Systematic reviews, however, indicate that the evidence of its efficacy is limited. Our aim was to evaluate the effectiveness of a workplace educational and physical program in reducing headache and neck/shoulder pain. Methodology/Principal Findings: Cluster-randomized controlled trial. All municipal workers of the City of Turin, Italy, were invited to participate. Those who agreed were randomly assigned, according to their departments, to the intervention group (IG) or to the control group and were given diaries for the daily recording of pain episodes for 1 month (baseline). Subsequently, only the IG (119 departments, 923 workers) began the physical and educational program, whereas the control group (117 departments, 990 workers) did not receive any intervention. All participants were again given diaries for the daily recording of pain episodes after 6 months of intervention. The primary outcome was the change in the frequency of headache (expressed as the proportion of subjects with a 6550% reduction of frequency; responder rate); among the secondary outcomes there were the absolute reduction of the number of days per month with headache and neck/shoulder pain. Differences between the two groups were evaluated using mixed-effect regression models. The IG showed a higher responder rate [risk ratio, 95% confidence interval (CI)] for headache (1.58; 1.28 to 1.92) and for neck/shoulder pain (1.53; 1.27 to 1.82), and a larger reduction of the days per month (95% CI) with headache (-1.72; -2.40 to -1.04) and with neck/shoulder pain (-2.51; -3.56 to -1.47). Conclusions: The program effectively reduced headache and neck/shoulder pain in a large working community and appears to be easily transferable to primary-care settings. Further trials are needed to investigate the program effectiveness in a clinical setting, for highly selected patients suffering from specific headache types. Trial Registration: ClinicalTrials.gov NCT00551980. \ua9 2012 Mongini et al

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore