875 research outputs found

    Evaluation of human chorionic gonadotropin as a replacement for GnRH in an ovulation synchronization protocol before fixed-time insemination

    Get PDF
    Two experiments were conducted to evaluate the difference between gonadotropinreleasing hormone (GnRH) and human chorionic gonadotropin (hCG) given at the beginning of a timed AI protocol and their effects on fertility. In Experiment 1, beef cows (n = 672) at six different locations were assigned randomly to treatments based on age, body condition, and days postpartum. On day −10, cattle were treated with GnRH or hCG and a progesterone-releasing controlled internal drug release (CIDR) insert was placed in the vagina. An injection of PGF2α was given and CIDR inserts were removed on day −3. Cows were inseminated at one fixed timed at 62 hr (day 0) after CIDR insert removal. Pregnancy was diagnosed at 33 days (range of 32 to 35) after insemination to determine pregnancy rates. For cows that were pregnant after the first insemination, a second pregnancy diagnosis was conducted 35 days (range of 33 to 37) after the first diagnosis to determine pregnancy survival. Pregnancy rates were reduced by the hCG injection compared with the GnRH injection (39.1 vs. 53.5%). In Experiment 2, cattle were assigned randomly to three treatments, balanced evenly across the two treatments (GnRH vs. hCG) applied in Experiment 1. Cows were injected with GnRH, hCG, or saline seven days before the first pregnancy diagnosis of cows inseminated in Experiment 1. At the time of pregnancy diagnosis, cattle found not pregnant (n = 328) were given PGF2α and inseminated 56 hours later. A second pregnancy diagnosis was conducted 35 days (range of 33 to 37) after the second insemination to determine pregnancy rate at the second AI. Injections of GnRH, hCG, or saline had no effect on pregnancy rates of cows already pregnant to the first insemination. Pregnancy rates after second insemination in cows given an injection of hCG or GnRH, however, tended to be reduced. Percentage of cows pregnant after two timed inseminations exceeded 60% without any need to detect estrus

    Personal Service Corporations: Who Is the Income Earner?

    Get PDF

    Coherent electron-phonon coupling and polaron-like transport in molecular wires

    Full text link
    We present a technique to calculate the transport properties through one-dimensional models of molecular wires. The calculations include inelastic electron scattering due to electron-lattice interaction. The coupling between the electron and the lattice is crucial to determine the transport properties in one-dimensional systems subject to Peierls transition since it drives the transition itself. The electron-phonon coupling is treated as a quantum coherent process, in the sense that no random dephasing due to electron-phonon interactions is introduced in the scattering wave functions. We show that charge carrier injection, even in the tunneling regime, induces lattice distortions localized around the tunneling electron. The transport in the molecular wire is due to polaron-like propagation. We show typical examples of the lattice distortions induced by charge injection into the wire. In the tunneling regime, the electron transmission is strongly enhanced in comparison with the case of elastic scattering through the undistorted molecular wire. We also show that although lattice fluctuations modify the electron transmission through the wire, the modifications are qualitatively different from those obtained by the quantum electron-phonon inelastic scattering technique. Our results should hold in principle for other one-dimensional atomic-scale wires subject to Peierls transitions.Comment: 21 pages, 8 figures, accepted for publication in Phys. Rev. B (to appear march 2001

    Atom lasers: production, properties and prospects for precision inertial measurement

    Full text link
    We review experimental progress on atom lasers out-coupled from Bose-Einstein condensates, and consider the properties of such beams in the context of precision inertial sensing. The atom laser is the matter-wave analog of the optical laser. Both devices rely on Bose-enhanced scattering to produce a macroscopically populated trapped mode that is output-coupled to produce an intense beam. In both cases, the beams often display highly desirable properties such as low divergence, high spectral flux and a simple spatial mode that make them useful in practical applications, as well as the potential to perform measurements at or below the quantum projection noise limit. Both devices display similar second-order correlations that differ from thermal sources. Because of these properties, atom lasers are a promising source for application to precision inertial measurements.Comment: This is a review paper. It contains 40 pages, including references and figure

    Partonic flow and ϕ\phi-meson production in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the ϕ\phi-meson elliptic flow (v2(pT)v_{2}(p_{T})) and high statistics pTp_{T} distributions for different centralities from sNN\sqrt{s_{NN}} = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2v_{2} of the ϕ\phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Ω\Omega to those of the ϕ\phi as a function of transverse momentum is consistent with a model based on the recombination of thermal ss quarks up to pT4p_{T}\sim 4 GeV/cc, but disagrees at higher momenta. The nuclear modification factor (RCPR_{CP}) of ϕ\phi follows the trend observed in the KS0K^{0}_{S} mesons rather than in Λ\Lambda baryons, supporting baryon-meson scaling. Since ϕ\phi-mesons are made via coalescence of seemingly thermalized ss quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR

    Non-identical particle correlations in 130 and 200 AGeV collisions at STAR

    Full text link
    STAR has performed a correlation analyses of pion-kaon and pion-proton pairs for sqrt(s_NN)=130 AGeV and sqrt(s_NN)=200 AGeV and kaon-proton, proton-Lambda and pion-Cascade pairs for AuAu collisions sqrt(s_NN)=200 AGeV. They show that average emission space-time points of pions, kaons and protons are not the same. These asymmetries are interpreted as a consequence of transverse radial expansion of the system; emission time differences explain only part of the asymmetry. Therefore our measurements independently confirm the existence of transverse radial flow. Furthermore, correlations of strange hyperons is investigated by performing proton-Lambda and pion-Cascade analyses, giving estimates of source size at high m_{T}. The strong interaction potential between (anti-)proton and lambda as well as kaon and proton is investigated.Comment: 5 pages, 3 figures, Quark Matter 04 proceedings, submitted to J. Phys. G: Nucl. Phy

    Measurement of open charm production in dd+Au collisions at sNN\sqrt{s_{NN}}=200 GeV

    Full text link
    We present the first comprehensive measurement of D0,D+,D+D^{0}, D^{+}, D^{*+} and their charge conjugate states at mid-rapidity in dd+Au collisions at sNN\sqrt{s_{_{NN}}}=200 GeV using the STAR TPC. The directly measured open charm multiplicity distribution covers a broad transverse momentum region of 0<pT<11<p_{T}<11 GeV/cc. The measured dN/dydN/dy at mid-rapidity for D0D^{0} is 0.0265±0.0036(stat.)±0.0071(syst.)0.0265\pm 0.0036 (stat.) \pm 0.0071 (syst.) and the measured D+/D0D^{*+}/D^{0} and D+/D0D^{+}/D^{0} ratios are approximately equal with a magnitude of 0.40±0.09(stat.)±0.13(syst.)0.40\pm 0.09(stat.) \pm 0.13(syst.). The total ccˉc\bar{c} cross section per nucleon-nucleon collision extracted from this study is 1.18±0.21(stat.)±0.39(syst.)1.18 \pm 0.21(stat.) \pm 0.39(syst.) mb. The direct measurement of open charm production is consistent with STAR single electron data. This cross section is higher than expectations from PYTHIA and other pQCD calculations. The measured pTp_{T} distribution is harder than the pQCD prediction using the Peterson fragmentation function.Comment: Quark Matter 2004 Proceeding

    Plasma Wakefield Acceleration with a Modulated Proton Bunch

    Get PDF
    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.Comment: 9 pages, 7 figure
    corecore