10 research outputs found

    Prototheca zopfii genotype 2 disseminated infection in a dog with neurological signs

    Get PDF
    Prototheca zopfii is an alga that can cause disease in animals and humans. Here, we reported a case of systemic protothecosis in a 2-year-old female Boxer. The animal exhibited tetraparesis and vertical nystagmus. It died two weeks after the onset of clinical signs and was necropsied. At gross examination, whitish areas were identified in the heart. Oval or round structures were observed by microscopic examination, some of which formed morula-like structures compatible with algae in the heart, skeletal muscle, and brain. Growth of Prototheca sp. was observed in the heart after culture at 37°C on Sabouraud agar medium with chloramphenicol. Immunohistochemical analysis of the heart and brain using an anti-Prototheca zopfii polyclonal antibody yielded positive results. Genotyping of the cultured agent from brain and heart samples was performed by restriction fragment length polymorphism of a specific 18S rDNA fragment. P. zopfii genotype 2 was reported to be the cause of disseminated protothecosis in this dog with manifestation in the brain, heart, and skeletal muscle

    A social and ecological assessment of tropical land uses at multiple scales:the Sustainable Amazon Network

    Get PDF
    Science has a critical role to play in guiding more sustainable development trajectories. Here, we present the Sustainable Amazon Network (Rede Amazonia Sustentavel, RAS): a multidisciplinary research initiative involving more than 30 partner organizations working to assess both social and ecological dimensions of land-use sustainability in eastern Brazilian Amazonia. The research approach adopted by RAS offers three advantages for addressing land-use sustainability problems: (i) the collection of synchronized and co-located ecological and socioeconomic data across broad gradients of past and present human use; (ii) a nested sampling design to aid comparison of ecological and socioeconomic conditions associated with different land uses across local, landscape and regional scales; and (iii) a strong engagement with a wide variety of actors and non-research institutions. Here, we elaborate on these key features, and identify the ways in which RAS can help in highlighting those problems in most urgent need of attention, and in guiding improvements in land-use sustainability in Amazonia and elsewhere in the tropics. We also discuss some of the practical lessons, limitations and realities faced during the development of the RAS initiative so far

    Fungal Planet description sheets: 716–784

    No full text
    Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetopsina eucalypti on Eucalyptus leaf litter, Colletotrichum cobbittiense from Cordyline stricta x C. australis hybrid, Cyanodermella banksiae on Banksia ericifolia subsp. macrantha, Discosia macrozamiae on Macrozamia miquelii, Elsinoe banksiigena on Banksia marginata, Elsinoe elaeocarpi on Elaeocarpus sp., Elsinoe leucopogonis on Leucopogon sp., Helminthosporium livistonae on Livistona australis, Idriellomyces eucalypti (incl. Idriellomyces gen. nov.) on Eucalyptus obliqua, Lareunionomyces eucalypti on Eucalyptus sp., Myrotheciomyces corymbiae (incl. Myrotheciomyces gen. nov., Myrotheciomycetaceae fam. nov.), Neolauriomyces eucalypti (incl. Neolauriomyces gen. nov., Neolauriomycetaceae fam. nov.) on Eucalyptus sp., Nullicamyces eucalypti (incl. Nullicamyces gen. nov.) on Eucalyptus leaf litter, Oidiodendron eucalypti on Eucalyptus maidenii, Paracladophialophora cyperacearum (incl. Paracladophialophoraceae fam. nov.) and Periconia cyperacearum on leaves of Cyperaceae, Porodiplodia livistonae (incl. Porodiplodia gen. nov., Porodiplodiaceae fam. nov.) on Livistona australis, Sporidesmium melaleucae (incl. Sporidesmiales ord. nov.) on Melaleuca sp., Teratosphaeria sieberi on Eucalyptus sieberi, Thecaphora australiensis in capsules of a variant of Oxalis exilis. Brazil, Aspergillus serratalhadensis from soil, Diaporthe pseudo-inconspicua from Poincianella pyramidalis, Fomitiporella pertenuis on dead wood, Geastrum magnosporum on soil, Marquesius aquaticus (incl. Marquesius gen. nov.) from submerged decaying twig and leaves of unidentified plant, Mastigosporella pigmentata from leaves of Qualea parviflorae, Mucor souzae from soil, Mycocalia aquaphila on decaying wood from tidal detritus, Preussia citrullina as endophyte from leaves of Citrullus lanatus, Queiroziella brasiliensis (incl. Queiroziella gen. nov.) as epiphytic yeast on leaves of Portea leptantha, Quixadomyces cearensis (incl. Quixadomyces gen. nov.) on decaying bark, Xylophallus clavatus on rotten wood. Canada, Didymella cari on Carum carvi and Coriandrum sativum. Chile, Araucasphaeria foliorum (incl. Araucasphaeria gen. nov.) on Araucaria araucana, Aspergillus tumidus from soil, Lomentospora valparaisensis from soil. Colombia, Corynespora pseudocassiicola on Byrsonima sp., Eucalyptostroma eucalyptorum on Eucalyptus pellita, Neometulocladosporiella eucalypti (incl. Neometulocladosporiella gen. nov.) on Eucalyptus grandis x urophylla, Tracylla eucalypti (incl. Tracyllaceae fam. nov., Tracyllalales ord. nov.) on Eucalyptus urophylla. Cyprus, Gyromitra anthracobia (incl. Gyromitra subg. Pseudoverpa) on burned soil. Czech Republic, Lecanicillium restrictum from the surface of the wooden barrel, Lecanicillium testudineum from scales of Trachemys scripta elegans. Ecuador, Entoloma yanacolor and Saproamanita quitensis on soil. France, Lentithecium carbonneanum from submerged decorticated Populus branch. Hungary, Pleuromyces hungaricus (incl. Pleuromyces gen. nov.) from a large Fagus sylvatica log. Iran, Zymoseptoria crescenta on Aegilops triuncialis. Malaysia, Ochroconis musicola on Musa sp. Mexico, Cladosporium michoacanense from soil. New Zealand, Acrodontium metrosideri on Metrosideros excelsa, Polynema podocarpi on Podocarpus totara, Pseudoarthrographis phlogis (incl. Pseudoarthrographis gen. nov.) on Phlox subulata. Nigeria, Coprinopsis afrocinerea on soil. Pakistan, Russula mansehraensis on soil under Pinus roxburghii. Russia, Baorangia alexandri on soil in deciduous forests with Quercus mongolica. South Africa, Didymocyrtis brachylaenae on Brachylaena discolor. Spain, Alfaria dactylis from fruit of Phoenix dactylifera, Dothiora infuscans from a blackened wall, Exophiala nidicola from the nest of an unidentified bird, Matsushimaea monilioides from soil, Terfezia morenoi on soil. United Arab Emirates, Tirmania honrubiae on soil. USA, Arxotrichum wyomingense (incl. Arxotrichum gen. nov.) from soil, Hongkongmyces snookiorum from submerged detritus from a fresh water fen, Leratiomyces tesquorum from soil, Talaromyces tabacinus on leaves of Nicotiana tabacum. Vietnam, Afroboletus vietnamensis on soil in an evergreen tropical forest, Colletotrichum condaoense from Ipomoea pes-caprae. Morphological and culture characteristics along with DNA barcodes are provided.project of the Komarov Botanical Institute RAS 'Biodiversity and spatial structure of fungi and myxomycetes communities in natural and anthropogenic ecosystems' AAAA-A18-118031290108-6 ; Russian Science Foundation 14-50-00029 ; Universidade de Pernambuco ; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) ; Conselho Nacional do Desenvolvimento Cientifico e Tecnologico (CNPq) ; Fundacao de Amparo a Ciencia e Tecnologia de Pernambuco (FACEPE) ; Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) ; Instituto Chico Mendes de Conservacao da Biodiversidade (ICMBio) ; Parque Memorial Zumbi dos Palmares and Usina Caete - Grupo Carlos Lyra ; Secretaria de Educacion Superior, Ciencia, Tecnologia e Innovacion del Ecuador (SENESCYT) ; Arca de Noe Initiative ; Pontificia Universidad Catolica del Ecuador N13415 ; Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) ; Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT), Chile 11140562 ; Czechoslovak Microscopy Society ; Charles University Research Centre 204069 ; Czech Ministry of Health AZV 17-31269A ; Slovak American Foundation ; Slovak national project Vega 02/0018/18 ; Higher Education Commission (HEC), Islamabad, Pakistan ; Slovak national project APVV-15-0210 ; Ministry of Education, Youth and Sports of the Czech Republic LO1509 ; FEDER 19484/PI/14 ; Fundacion Seneca - Agencia de Ciencia y Tecnologia de la Region de Murcia, Spain 19484/PI/14 ; AEI CGL2016-78946-R ; FEDER, UE CGL2016-78946-R ; Commonwealth of Pennsylvania ; Pennsylvania Department of Conservation and Natural Resources ; Pennsylvania Bureau of State Parks ; Black Moshannon State Park ; Mycological Society of America ; University of Illinois Urbana-Champaign School of Integrative Biology ; Saskatchewan Ministry of Agriculture ; Western Grains Research Foundation ; Herb, Spice and Specialty Agriculture Association ; Saskatchewan Crop Insurance Corporation ; Nordesta AS

    Update on the Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Guideline of the Brazilian Society of Cardiology-2019

    No full text
    sem informação113344966

    Newly diagnosed and growing subependymal giant cell astrocytoma in adults with tuberous sclerosis complex: Results from the international TOSCA study

    No full text
    International audienceThe onset and growth of subependymal giant cell astrocytoma (SEGA) in tuberous sclerosis complex (TSC) typically occurs in childhood. There is minimal information on SEGA evolution in adults with TSC. Of 2,211 patients enrolled in TOSCA, 220 of the 803 adults (27.4%) ever had a SEGA. Of 186 patients with SEGA still ongoing in adulthood, 153 (82.3%) remained asymptomatic, and 33 (17.7%) were reported to ever have developed symptoms related to SEGA growth. SEGA growth since the previous scan was reported in 39 of the 186 adults (21%) with ongoing SEGA. All but one patient with growing SEGA had mutations in TSC2. Fourteen adults (2.4%) were newly diagnosed with SEGA during follow-up, and majority had mutations in TSC2. Our findings suggest that surveillance for new or growing SEGA is warranted also in adulthood, particularly in patients with mutations in TSC2

    Treatment patterns and use of resources in patients with tuberous sclerosis complex : insights from the TOSCA registry

    No full text
    Tuberous Sclerosis Complex (TSC) is a rare autosomal-dominant disorder caused by mutations in the TSC1 or TSC2 genes. Patients with TSC may suffer from a wide range of clinical manifestations; however, the burden of TSC and its impact on healthcare resources needed for its management remain unknown. Besides, the use of resources might vary across countries depending on the country-specific clinical practice. The aim of this paper is to describe the use of TSC-related resources and treatment patterns within the TOSCA registry. A total of 2,214 patients with TSC from 31 countries were enrolled and had a follow-up of up to 5 years. A search was conducted to identify the variables containing both medical and non-medical resource use information within TOSCA. This search was performed both at the level of the core project as well as at the level of the research projects on epilepsy, subependymal giant cell astrocytoma (SEGA), lymphangioleiomyomatosis (LAM), and renal angiomyolipoma (rAML) taking into account the timepoints of the study, age groups, and countries. Data from the quality of life (QoL) research project were analyzed by type of visit and age at enrollment. Treatments varied greatly depending on the clinical manifestation, timepoint in the study, and age groups. GAB Aergics were the most prescribed drugs for epilepsy, and mTOR inhibitors are dramatically replacing surgery in patients with SEGA, despite current recommendations proposing both treatment options. mTOR inhibitors are also becoming common treatments in rAML and LAM patients. Forty-two out of the 143 patients (29.4%) who participated in the QoL research project reported inpatient stays over the last year. Data from non-medical resource use showed the critical impact of TSC on job status and capacity. Disability allowances were more common in children than adults (51.1% vs 38.2%). Psychological counseling, social services and social worker services were needed by <15% of the patients, regardless of age. The long-term nature, together with the variability in its clinical manifestations, makes TSC a complex and resource-demanding disease. The present study shows a comprehensive picture of the resource use implications of TSC

    Clinical characteristics of subependymal giant cell astrocytoma in tuberous sclerosis complex

    No full text
    International audienceBackground: This study evaluated the characteristics of subependymal giant cell astrocytoma (SEGA) in patients with tuberous sclerosis complex (TSC) entered into the TuberOus SClerosis registry to increase disease Awareness (TOSCA). Methods: The study was conducted at 170 sites across 31 countries. Data from patients of any age with a documented clinical visit for TSC in the 12 months preceding enrollment or those newly diagnosed with TSC were entered. Results: SEGA were reported in 554 of 2,216 patients (25%). Median age at diagnosis of SEGA was 8 years (range, 18 years. SEGA were symptomatic in 42.1% of patients. Symptoms included increased seizure frequency (15.8%), behavioural disturbance (11.9%), and regression/loss of cognitive skills (9.9%), in addition to those typically associated with increased intracranial pressure. SEGA were significantly more frequent in patients with TSC2 compared to TSC1 variants (33.7 vs. 13.2 %, p < 0.0001). Main treatment modalities included surgery (59.6%) and mammalian target of rapamycin (mTOR) inhibitors (49%). Conclusions: Although SEGA diagnosis and growth typically occurs during childhood, SEGA can occur and grow in both infants and adults
    corecore