47 research outputs found

    Comprehensive diagnostics of acute myeloid leukemia by whole transcriptome RNA sequencing

    Get PDF
    Acute myeloid leukemia (AML) is caused by genetic aberrations that also govern the prognosis of patients and guide risk-adapted and targeted therapy. Genetic aberrations in AML are structurally diverse and currently detected by different diagnostic assays. This study sought to establish whole transcriptome RNA sequencing as single, comprehensive, and flexible platform for AML diagnostics. We developed HAMLET (Human AML Expedited Transcriptomics) as bioinformatics pipeline for simultaneous detection of fusion genes, small variants, tandem duplications, and gene expression with all information assembled in an annotated, user-friendly output file. Whole transcriptome RNA sequencing was performed on 100 AML cases and HAMLET results were validated by reference assays and targeted resequencing. The data showed that HAMLET accurately detected all fusion genes and overexpression of EVI1 irrespective of 3q26 aberrations. In addition, small variants in 13 genes that are often mutated in AML were called with 99.2% sensitivity and 100% specificity, and tandem duplications in FLT3 and KMT2A were detected by a novel algorithm based on soft-clipped reads with 100% sensitivity and 97.1% specificity. In conclusion, HAMLET has the potential to provide accurate comprehensive diagnostic information relevant for AML classification, risk assessment and targeted therapy on a single technology platform

    Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesPersistent insomnia is among the most frequent complaints in general practice. To identify genetic factors for insomnia complaints, we performed a genome-wide association study (GWAS) and a genome-wide gene-based association study (GWGAS) in 113,006 individuals. We identify three loci and seven genes associated with insomnia complaints, with the associations for one locus and five genes supported by joint analysis with an independent sample (n = 7,565). Our top association (MEIS1, P < 5 × 10-8) has previously been implicated in restless legs syndrome (RLS). Additional analyses favor the hypothesis that MEIS1 exhibits pleiotropy for insomnia and RLS and show that the observed association with insomnia complaints cannot be explained only by the presence of an RLS subgroup within the cases. Sex-specific analyses suggest that there are different genetic architectures between the sexes in addition to shared genetic factors. We show substantial positive genetic correlation of insomnia complaints with internalizing personality traits and metabolic traits and negative correlation with subjective well-being and educational attainment. These findings provide new insight into the genetic architecture of insomnia.Netherlands Organization for Scientific Research NWO Brain & Cognition 433-09-228 European Research Council ERC-ADG-2014-671084 INSOMNIA Netherlands Scientific Organization (NWO) VU University (Amsterdam, the Netherlands) Dutch Brain Foundation Helmholtz Zentrum Munchen - German Federal Ministry of Education and Research state of Bavaria German Migraine & Headache Society (DMKG) Almirall AstraZeneca Berlin Chemie Boehringer Boots Health Care GlaxoSmithKline Janssen Cilag McNeil Pharma MSD Sharp Dohme Pfizer Institute of Epidemiology and Social Medicine at the University of Munster German Ministry of Education and Research (BMBF) German Restless Legs Patient Organisation (RLS Deutsche Restless Legs Vereinigung) Swiss RLS Patient Association (Schweizerische Restless Legs Selbsthilfegruppe

    Biallelic loss-of-function variants in PLD1 cause congenital right-sided cardiac valve defects and neonatal cardiomyopathy

    Get PDF
    Congenital heart disease is the most common type of birth defect, accounting for one-third of all congenital anomalies. Using whole-exome sequencing of 2718 patients with congenital heart disease and a search in GeneMatcher, we identified 30 patients from 21 unrelated families of different ancestries with biallelic phospholipase D1 (PLD1) variants who presented predominantly with congenital cardiac valve defects. We also associated recessive PLD1 variants with isolated neonatal cardiomyopathy. Furthermore, we established that p.I668F is a founder variant among Ashkenazi Jews (allele frequency of ~2%) and describe the phenotypic spectrum of PLD1-associated congenital heart defects. PLD1 missense variants were overrepresented in regions of the protein critical for catalytic activity, and, correspondingly, we observed a strong reduction in enzymatic activity for most of the mutant proteins in an enzymatic assay. Finally, we demonstrate that PLD1 inhibition decreased endothelial-mesenchymal transition, an established pivotal early step in valvulogenesis. In conclusion, our study provides a more detailed understanding of disease mechanisms and phenotypic expression associated with PLD1 loss of function

    Global Outcome Assessment Life-long after stroke in young adults initiative-the GOAL initiative : study protocol and rationale of a multicentre retrospective individual patient data meta-analysis

    Get PDF
    Introduction Worldwide, 2 million patients aged 18-50 years suffer a stroke each year, and this number is increasing. Knowledge about global distribution of risk factors and aetiologies, and information about prognosis and optimal secondary prevention in young stroke patients are limited. This limits evidence-based treatment and hampers the provision of appropriate information regarding the causes of stroke, risk factors and prognosis of young stroke patients. Methods and analysis The Global Outcome Assessment Life-long after stroke in young adults (GOAL) initiative aims to perform a global individual patient data meta-analysis with existing data from young stroke cohorts worldwide. All patients aged 18-50 years with ischaemic stroke or intracerebral haemorrhage will be included. Outcomes will be the distribution of stroke aetiology and (vascular) risk factors, functional outcome after stroke, risk of recurrent vascular events and death and finally the use of secondary prevention. Subgroup analyses will be made based on age, gender, aetiology, ethnicity and climate of residence.Peer reviewe

    The genetics of the mood disorder spectrum:genome-wide association analyses of over 185,000 cases and 439,000 controls

    Get PDF
    Background Mood disorders (including major depressive disorder and bipolar disorder) affect 10-20% of the population. They range from brief, mild episodes to severe, incapacitating conditions that markedly impact lives. Despite their diagnostic distinction, multiple approaches have shown considerable sharing of risk factors across the mood disorders. Methods To clarify their shared molecular genetic basis, and to highlight disorder-specific associations, we meta-analysed data from the latest Psychiatric Genomics Consortium (PGC) genome-wide association studies of major depression (including data from 23andMe) and bipolar disorder, and an additional major depressive disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; non-overlapping N = 609,424). Results Seventy-three loci reached genome-wide significance in the meta-analysis, including 15 that are novel for mood disorders. More genome-wide significant loci from the PGC analysis of major depression than bipolar disorder reached genome-wide significance. Genetic correlations revealed that type 2 bipolar disorder correlates strongly with recurrent and single episode major depressive disorder. Systems biology analyses highlight both similarities and differences between the mood disorders, particularly in the mouse brain cell-types implicated by the expression patterns of associated genes. The mood disorders also differ in their genetic correlation with educational attainment – positive in bipolar disorder but negative in major depressive disorder. Conclusions The mood disorders share several genetic associations, and can be combined effectively to increase variant discovery. However, we demonstrate several differences between these disorders. Analysing subtypes of major depressive disorder and bipolar disorder provides evidence for a genetic mood disorders spectrum

    Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders.

    Get PDF
    Multiplex families with a high prevalence of a psychiatric disorder are often examined to identify rare genetic variants with large effect sizes. In the present study, we analysed whether the risk for bipolar disorder (BD) in BD multiplex families is influenced by common genetic variants. Furthermore, we investigated whether this risk is conferred mainly by BD-specific risk variants or by variants also associated with the susceptibility to schizophrenia or major depression. In total, 395 individuals from 33 Andalusian BD multiplex families (166 BD, 78 major depressive disorder, 151 unaffected) as well as 438 subjects from an independent, BD case/control cohort (161 unrelated BD, 277 unrelated controls) were analysed. Polygenic risk scores (PRS) for BD, schizophrenia (SCZ), and major depression were calculated and compared between the cohorts. Both the familial BD cases and unaffected family members had higher PRS for all three psychiatric disorders than the independent controls, with BD and SCZ being significant after correction for multiple testing, suggesting a high baseline risk for several psychiatric disorders in the families. Moreover, familial BD cases showed significantly higher BD PRS than unaffected family members and unrelated BD cases. A plausible hypothesis is that, in multiplex families with a general increase in risk for psychiatric disease, BD development is attributable to a high burden of common variants that confer a specific risk for BD. The present analyses demonstrated that common genetic risk variants for psychiatric disorders are likely to contribute to the high incidence of affective psychiatric disorders in the multiplex families. However, the PRS explained only part of the observed phenotypic variance, and rare variants might have also contributed to disease development

    Modeling Match Performance in Elite Volleyball Players: Importance of Jump Load and Strength Training Characteristics

    No full text
    In this study, we investigated the relationships between training load, perceived wellness and match performance in professional volleyball by applying the machine learning techniques XGBoost, random forest regression and subgroup discovery. Physical load data were obtained by manually logging all physical activities and using wearable sensors. Daily wellness of players was monitored using questionnaires. Match performance was derived from annotated actions by a video scout during matches. We identified conditions of predictor variables that related to attack and pass performance (p < 0.05). Better attack performance is related to heavy weights of lower-body strength training exercises in the preceding four weeks. However, worse attack performance is linked to large variations in weights of full-body strength training exercises, excessively heavy upper-body strength training, low jump heights and small variations in the number of high jumps in the four weeks prior to competition. Lower passing performance was associated with small variations in the number of high jumps in the preceding week and an excessive amount of high jumps performed, on average, in the two weeks prior to competition. Differences in findings with respect to passing and attack performance suggest that elite volleyball players can improve their performance if training schedules are adapted to the position of a player

    Modeling match performance in elite volleyball players : importance of jump load and strength training characteristics

    Get PDF
    In this study, we investigated the relationships between training load, perceived wellness and match performance in professional volleyball by applying the machine learning techniques XGBoost, random forest regression and subgroup discovery. Physical load data were obtained by manually logging all physical activities and using wearable sensors. Daily wellness of players was monitored using questionnaires. Match performance was derived from annotated actions by a video scout during matches. We identified conditions of predictor variables that related to attack and pass performance (p < 0.05). Better attack performance is related to heavy weights of lower-body strength training exercises in the preceding four weeks. However, worse attack performance is linked to large variations in weights of full-body strength training exercises, excessively heavy upper-body strength training, low jump heights and small variations in the number of high jumps in the four weeks prior to competition. Lower passing performance was associated with small variations in the number of high jumps in the preceding week and an excessive amount of high jumps performed, on average, in the two weeks prior to competition. Differences in findings with respect to passing and attack performance suggest that elite volleyball players can improve their performance if training schedules are adapted to the position of a player

    Personalized machine learning approach to injury monitoring in elite volleyball players

    No full text
    ABSTRACTWe implemented a machine learning approach to investigate individual indicators of training load and wellness that may predict the emergence or development of overuse injuries in professional volleyball. In this retrospective study, we collected data of 14 elite volleyball players (mean ± SD age: 27 ± 3 years, weight: 90.5 ± 6.3 kg, height: 1.97 ± 0.07 m) during 24 weeks of the 2018 international season. Physical load was tracked by manually logging the performed physical activities and by capturing the jump load using wearable devices. On a daily basis, the athletes answered questions about their wellness, and overuse complaints were monitored via the Oslo Sports Trauma Research Center (OSTRC) questionnaire. Based on training load and wellness indicators, we identified subgroups of days with increased injury risk for each volleyball player using the machine learning technique Subgroup Discovery. For most players and facets of overuse injuries (such as reduced sports participation), we have identified personalized training load and wellness variables that are significantly related to overuse issues. We demonstrate that the emergence and development of overuse injuries can be better understood using daily monitoring, taking into account interactions between training load and wellness indicators, and by applying a personalized approach.Highlights With detailed, athlete-specific monitoring of overuse complaints and training load, practical insights in the development of overuse injuries can be obtained in a player-specific fashion contributing to injury prevention in sports.A multi-dimensional and personalized approach that includes interactions between training load variables significantly increases the understanding of overuse issues on a personal basis.Jump load is an important predictor for overuse injuries in volleyball
    corecore