336 research outputs found

    Preserved Edge Convolutional Neural Network for Sensitivity Enhancement of Deuterium Metabolic Imaging (DMI)

    Full text link
    Purpose: Common to most MRSI techniques, the spatial resolution and the minimal scan duration of Deuterium Metabolic Imaging (DMI) are limited by the achievable SNR. This work presents a deep learning method for sensitivity enhancement of DMI. Methods: A convolutional neural network (CNN) was designed to estimate the 2H-labeled metabolite concentrations from low SNR and distorted DMI FIDs. The CNN was trained with synthetic data that represent a range of SNR levels typically encountered in vivo. The estimation precision was further improved by fine-tuning the CNN with MRI-based edge-preserving regularization for each DMI dataset. The proposed processing method, PReserved Edge ConvolutIonal neural network for Sensitivity Enhanced DMI (PRECISE-DMI), was applied to simulation studies and in vivo experiments to evaluate the anticipated improvements in SNR and investigate the potential for inaccuracies. Results: PRECISE-DMI visually improved the metabolic maps of low SNR datasets, and quantitatively provided higher precision than the standard Fourier reconstruction. Processing of DMI data acquired in rat brain tumor models resulted in more precise determination of 2H-labeled lactate and glutamate + glutamine levels, at increased spatial resolution (from >8 to 2 μ\muL) or shortened scan time (from 32 to 4 min) compared to standard acquisitions. However, rigorous SD-bias analyses showed that overuse of the edge-preserving regularization can compromise the accuracy of the results. Conclusion: PRECISE-DMI allows a flexible trade-off between enhancing the sensitivity of DMI and minimizing the inaccuracies. With typical settings, the DMI sensitivity can be improved by 3-fold while retaining the capability to detect local signal variations

    Screening for pineal trilateral retinoblastoma revisited: a meta-analysis

    Get PDF
    Topic To determine until what age children are at risk for pineal trilateral retinoblastoma (TRb), whether its onset is linked to the age at which intraocular retinoblastomas develop, and the lead time from a detectable pineal TRb to symptoms. Clinical relevance About 45% of patients with retinoblastoma – those with a germline RB1 pathogenic variant – are at risk for pineal TRb. Early detection and treatment is essential for survival. Current evidence is unclear on the usefulness of screening for pineal TRb and, if useful, until what age screening should be continued. Methods We conducted a study according to the MOOSE guideline for reporting meta-analyses of observational studies. We searched PubMed and Embase between January 1, 1966, and February 27, 2019, for published literature. We considered articles reporting patients with TRb with survival and follow-up data. Inclusion of articles was performed separately and independently by two authors, and two authors also independently extracted the relevant data. They resolved discrepancies by consensus. Results One hundred thirty-eight patients with pineal TRb were included. Of 22 asymptomatic patients, 21 (95%) were diagnosed before the age of 40 months (median 16, interquartile range 9–29). Age at diagnosis of pineal TRb in patients diagnosed with retinoblastoma at ≤6 months versus >6 months of age were comparable (P=0.44), suggesting independency between the ages at diagnosis of intraocular retinoblastoma and pineal TRb. The laterality of intraocular retinoblastoma and its treatment were unassociated with the age when the pineal TRb was diagnosed. The lead time from an asymptomatic to a symptomatic pineal TRb was approximately 1 year. By performing a screening magnetic resonance imaging scan every 6 months after the diagnosis of heritable retinoblastoma (median age 6 months) until the age of 36 months, at least 311 and 776 scans would be required to detect one asymptomatic pineal TRb and to save one life, respectively. Conclusion Patients with retinoblastoma are at risk for pineal trilateral retinoblastoma for a shorter period than previously assumed and the age at diagnosis of pineal trilateral retinoblastoma is independent of the age at diagnosis of retinoblastoma. The GRADE level of evidence for these conclusions remains low.Peer reviewe

    Maternal urinary iodine concentration in pregnancy and children's cognition: Results from a population-based birth cohort in an iodine-sufficient area

    Get PDF
    OBJECTIVE: Reports from populations with an insufficient iodine intake suggest that children of mothers with mild iodine deficiency during pregnancy are at risk for cognitive impairments. However, it is unknown whether, even in iodine-sufficient areas, low levels of iodine intake occur that influence cognitive development in the offspring. This study investigated the association between maternal low urinary iodine concentration (UIC) in pregnancy and children's cognition in a population-based sample from a country with an optimal iodine status (the Netherlands). SETTING AND PARTICIPANTS: In 1525 mother–child pairs in a Dutch multiethnic birth cohort, we investigated the relation between maternal UIC<150 μg/g creatinine, assessed <18 weeks gestation and children's cognition. OUTCOMES MEASURES: Non-verbal IQ and language comprehension were assessed during a visit to the research centre using Dutch test batteries when the children were 6 years. RESULTS: In total, 188 (12.3%) pregnant women had UIC<150 μg/g creatinine, with a median UIC equal to 119.3 μg/g creatinine. The median UIC in the group with UIC>150 μg/g creatinine was 322.9 μg/g and in the whole sample 296.5 μg/g creatinine. There was a univariate association between maternal low UIC and children's suboptimum non-verbal IQ (unadjusted OR=1.44, 95% CI 1.02 to 2.02). However, after adjustment for confounders, maternal low UIC was not associated with children's non-verbal IQ (adjusted OR=1.33, 95% CI 0.92 to 1.93). There was no relation between maternal UIC in early pregnancy and children's language comprehension at 6 years. CONCLUSIONS: The lack of a clear association between maternal low UIC and children's cognition probably reflects that low levels of iodine were not frequent and severe enough to affect neurodevelopment. This may result from the Dutch iodine fortification policy, which allows iodised salt to be added to almost all processed food and emphasises the monitoring of iodine intake in the population

    Asynchronous pineoblastoma is more likely after early diagnosis of retinoblastoma : a meta-analysis

    Get PDF
    Purpose To determine the risk of patients with an early diagnosis of heritable retinoblastoma being diagnosed with TRb (or pineoblastoma) asynchronously in a later stage and its effect on screening. Methods We updated the search (PubMed and Embase) for published literature as performed by our research group in 2014 and 2019. Trilateral retinoblastoma (TRb) patients were eligible for inclusion if identifiable as unique and the age at which TRb was diagnosed was available. The search yielded 97 new studies. Three new studies and eight new patients were included. Combined with 189 patients from the previous meta-analysis, the database included 197 patients. The main outcome was the percentage of asynchronous TRb in patients diagnosed before and after preset age thresholds of 6 and 12 months of age at retinoblastoma diagnosis. Results Seventy-nine per cent of patients with pineoblastoma are diagnosed with retinoblastoma before the age of 12 months. However, baseline MRI screening at time of retinoblastoma diagnosis fails to detect the later diagnosed pineal TRb in 89% of patients. We modelled that an additional MRI performed at the age of 29 months picks up 53% of pineoblastomas in an asymptomatic phase. The detection rate increased to 72%, 87% and 92%, respectively, with 2, 3 and 4 additional MRIs. Conclusions An MRI of the brain in heritable retinoblastoma before the age of 12 months misses most pineoblastomas, while retinoblastomas are diagnosed most often before the age of 12 months. Optimally timed additional MRI scans of the brain can increase the asymptomatic detection rate of pineoblastoma.Peer reviewe

    Magnetic Resonance Imaging Can Reliably Differentiate Optic Nerve Inflammation from Tumor Invasion in Retinoblastoma with Orbital Cellulitis

    Get PDF
    PURPOSE To investigate the prevalence and magnetic resonance imaging (MRI) phenotype of retinoblastoma-associated orbital cellulitis. Additionally, this study aimed to identify postlaminar optic nerve enhancement (PLONE) patterns differentiating between inflammation and tumor invasion. DESIGN A monocenter cohort study assessed the prevalence of orbital cellulitis features on MRI in retinoblastoma patients. A multicenter case-control study compared MRI features of the retinoblastoma-associated orbital cellulitis cases with retinoblastoma controls. PARTICIPANTS A consecutive retinoblastoma patient cohort of 236 patients (311 eyes) was retrospectively investigated. Subsequently, 30 retinoblastoma cases with orbital cellulitis were compared with 30 matched retinoblastoma controls without cellulitis. METHODS In the cohort study, retinoblastoma MRI scans were scored on presence of inflammatory features. In the case-control study, MRI scans were scored on intraocular features and PLONE patterns. Postlaminar enhancement patterns were compared with histopathologic assessment of postlaminar tumor invasion. Interreader agreement was assessed, and exact tests with Bonferroni correction were adopted for statistical comparisons. MAIN OUTCOME MEASURES Prevalence of retinoblastoma-associated orbital cellulitis on MRI was calculated. Frequency of intraocular MRI features was compared between cases and controls. Sensitivity and specificity of postlaminar optic nerve patterns for detection of postlaminar tumor invasion were assessed. RESULTS The MRI prevalence of retinoblastoma-associated orbital cellulitis was 6.8% (16/236). Retinoblastoma with orbital cellulitis showed significantly more tumor necrosis, uveal abnormalities (inflammation, hemorrhage, and necrosis), lens luxation (all P &lt; 0.001), and a larger eye size (P = 0.012). The inflammatory pattern of optic nerve enhancement (strong enhancement similar to adjacent choroid) was solely found in orbital cellulitis cases, of which none (0/16) showed tumor invasion on histopathology. Invasive pattern enhancement was found in both cases and controls, of which 50% (5/10) showed tumor invasion on histopathology. Considering these different enhancement patterns suggestive for either inflammation or tumor invasion increased specificity for detection of postlaminar tumor invasion in orbital cellulitis cases from 32% (95% confidence interval [CI], 16-52) to 89% (95% CI, 72-98). CONCLUSIONS Retinoblastoma cases presenting with orbital cellulitis show MRI findings of a larger eye size, extensive tumor necrosis, uveal abnormalities, and lens luxation. Magnetic resonance imaging contrast-enhancement patterns within the postlaminar optic nerve can differentiate between tumor invasion and inflammatory changes

    Correlation of gene expression with magnetic resonance imaging features of retinoblastoma: a multi-center radiogenomics validation study

    Full text link
    OBJECTIVES To validate associations between MRI features and gene expression profiles in retinoblastoma, thereby evaluating the repeatability of radiogenomics in retinoblastoma. METHODS In this retrospective multicenter cohort study, retinoblastoma patients with gene expression data and MRI were included. MRI features (scored blinded for clinical data) and matched genome-wide gene expression data were used to perform radiogenomic analysis. Expression data from each center were first separately processed and analyzed. The end product normalized expression values from different sites were subsequently merged by their Z-score to permit cross-sites validation analysis. The MRI features were non-parametrically correlated with expression of photoreceptorness (radiogenomic analysis), a gene expression signature informing on disease progression. Outcomes were compared to outcomes in a previous described cohort. RESULTS Thirty-six retinoblastoma patients were included, 15 were female (42%), and mean age was 24 (SD 18) months. Similar to the prior evaluation, this validation study showed that low photoreceptorness gene expression was associated with advanced stage imaging features. Validated imaging features associated with low photoreceptorness were multifocality, a tumor encompassing the entire retina or entire globe, and a diffuse growth pattern (all p < 0.05). There were a number of radiogenomic associations that were also not validated. CONCLUSIONS A part of the radiogenomic associations could not be validated, underlining the importance of validation studies. Nevertheless, cross-center validation of imaging features associated with photoreceptorness gene expression highlighted the capability radiogenomics to non-invasively inform on molecular subtypes in retinoblastoma. CLINICAL RELEVANCE STATEMENT Radiogenomics may serve as a surrogate for molecular subtyping based on histopathology material in an era of eye-sparing retinoblastoma treatment strategies. KEY POINTS - Since retinoblastoma is increasingly treated using eye-sparing methods, MRI features informing on molecular subtypes that do not rely on histopathology material are important. - A part of the associations between retinoblastoma MRI features and gene expression profiles (radiogenomics) were validated. - Radiogenomics could be a non-invasive technique providing information on the molecular make-up of retinoblastoma

    Cellular surface plasmon resonance-based detection of anti-HPA-1a antibody glycosylation in fetal and neonatal alloimmune thrombocytopenia

    Get PDF
    Fetal and neonatal alloimmune thrombocytopenia (FNAIT) can occur due to maternal IgG antibodies targeting platelet antigens, causing life-threatening bleeding in the neonate. However, the disease manifests itself in only a fraction of pregnancies, most commonly with anti-HPA-1a antibodies. We found that in particular, the core fucosylation in the IgG-Fc tail is highly variable in anti-HPA-1a IgG, which strongly influences the binding to leukocyte IgG-Fc receptors IIIa/b (FcγRIIIa/b). Currently, gold-standard IgG-glycoanalytics rely on complicated methods (e.g., mass spectrometry (MS)) that are not suited for diagnostic purposes. Our aim was to provide a simplified method to quantify the biological activity of IgG antibodies targeting cells. We developed a cellular surface plasmon resonance imaging (cSPRi) technique based on FcγRIII-binding to IgG-opsonized cells and compared the results with MS. The strength of platelet binding to FcγR was monitored under flow using both WT FcγRIIIa (sensitive to Fc glycosylation status) and mutant FcγRIIIa-N162A (insensitive to Fc glycosylation status). The quality of the anti-HPA-1a glycosylation was monitored as the ratio of binding signals from the WT versus FcγRIIIa-N162A, using glycoengineered recombinant anti-platelet HPA-1a as a standard. The method was validated with 143 plasma samples with anti-HPA-1a antibodies analyzed by MS with known clinical outcomes and tested for validation of the method. The ratio of patient signal from the WT versus FcγRIIIa-N162A correlated with the fucosylation of the HPA-1a antibodies measured by MS (r=-0.52). Significantly, FNAIT disease severity based on Buchanan bleeding score was similarly discriminated against by MS and cSPRi. In conclusion, the use of IgG receptors, in this case, FcγRIIIa, on SPR chips can yield quantitative and qualitative information on platelet-bound anti-HPA-1a antibodies. Using opsonized cells in this manner circumvents the need for purification of specific antibodies and laborious MS analysis to obtain qualitative antibody traits such as IgG fucosylation, for which no clinical test is currently available

    Cellular surface plasmon resonance-based detection of anti-HPA-1a antibody glycosylation in fetal and neonatal alloimmune thrombocytopenia

    Get PDF
    Fetal and neonatal alloimmune thrombocytopenia (FNAIT) can occur due to maternal IgG antibodies targeting platelet antigens, causing life-threatening bleeding in the neonate. However, the disease manifests itself in only a fraction of pregnancies, most commonly with anti-HPA-1a antibodies. We found that in particular, the core fucosylation in the IgG-Fc tail is highly variable in anti-HPA-1a IgG, which strongly influences the binding to leukocyte IgG-Fc receptors IIIa/b (FcγRIIIa/b). Currently, gold-standard IgG-glycoanalytics rely on complicated methods (e.g., mass spectrometry (MS)) that are not suited for diagnostic purposes. Our aim was to provide a simplified method to quantify the biological activity of IgG antibodies targeting cells. We developed a cellular surface plasmon resonance imaging (cSPRi) technique based on FcγRIII-binding to IgG-opsonized cells and compared the results with MS. The strength of platelet binding to FcγR was monitored under flow using both WT FcγRIIIa (sensitive to Fc glycosylation status) and mutant FcγRIIIa-N162A (insensitive to Fc glycosylation status). The quality of the anti-HPA-1a glycosylation was monitored as the ratio of binding signals from the WT versus FcγRIIIa-N162A, using glycoengineered recombinant anti-platelet HPA-1a as a standard. The method was validated with 143 plasma samples with anti-HPA-1a antibodies analyzed by MS with known clinical outcomes and tested for validation of the method. The ratio of patient signal from the WT versus FcγRIIIa-N162A correlated with the fucosylation of the HPA-1a antibodies measured by MS (r=-0.52). Significantly, FNAIT disease severity based on Buchanan bleeding score was similarly discriminated against by MS and cSPRi. In conclusion, the use of IgG receptors, in this case, FcγRIIIa, on SPR chips can yield quantitative and qualitative information on platelet-bound anti-HPA-1a antibodies. Using opsonized cells in this manner circumvents the need for purification of specific antibodies and laborious MS analysis to obtain qualitative antibody traits such as IgG fucosylation, for which no clinical test is currently available

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
    corecore