132 research outputs found

    El Terremoto de Tocopilla de Mw=7.7 (Norte de Chile) del 14 de Noviembre de 2007: Resultados preliminares de la geodesia especial (InSAR)

    Get PDF
    A Mw 7.7 subduction earthquake occurred on November 14, 2007 in Tocopilla (northern Chile). This region (between 16.5ºS and 23.5ºS) had been identified as major seismic gap (~1000 km length) since the South Peru (Mw= 9.1, 16 August 1868) and the Iquique (Mw=9.0, 10 May 1877) megathrust earthquakes. This gap was reduced to 500 km after the Arequipa (Mw = 8.3, 23 June 2001) and the Antofagasta (Mw = 8.1, 30 July 1995) earthquakes. We compute interferograms using Envisat ASAR images acquired before and after the Tocopilla earthquake to infer the location, geometry and slip of the rupture. Elastic modeling of this data allows us to infer that the 2007 main rupture extended over an area of ~150 x 60 km2, between 35 and 55 km depth, with a mean displacement of ~ 1.3 m. That means that the Tocopilla earthquake ruptured the deeper part of the seismogenic interface, probably within the transition zone. This earthquake released a little portion of the slip deficit accumulated in the seismic gap during the last 130 years (~ 10m). Hence the Tocopilla event may constitute a precursor of a future large thrust event in the current 500 km seismic gap that continues accumulating elastic strain from 1877.Un terremoto de subducción de Mw 7.7 tuvo lugar el 14 de Noviembre de 2007 en Tocopilla (norte de Chile). Esta región (entre 16.5ºS y 23.5º S) había sido identificada como una gran laguna sísmica (de ~ 1000 km de longitud) desde los terremotos del Sur de Perú (Mw = 9.1, 16 de Agosto de 1868) y de Iquique (Mw = 9.0, 10 de Mayo de 1877). La extensión de la laguna se redujo después de los terremotos de Arequipa (Mw = 8.3, 23 de Junio de 2001) y de Antofagasta (Mw=8.1, 30 de Julio de 1995). Hemos calculado interferogramas a partir de imágenes ASAR Envisat adquiridas antes y después del terremoto de Tocopilla para deducir la localización, geometría y deslizamiento asociados a la rotura. La modelización elástica de estos datos indica que la ruptura principal de 2007 se propagó sobre un área de ~150 x 60 km2, entre 35 y 55 km de profundidad, con un deslizamiento medio de ~1.3 m. Esto significa que el terremoto de Tocopilla rompió la parte profunda de la interfase sismogéncia, probablemente dentro de la zona de transición. Este terremoto relajó una porción muy pequeña del déficit de deslizamiento acumulado en la laguna sísmica durante los últimos 130 años (~10 m). Por lo tanto, el evento de Tocopilla podría constituir un precursor de un gran terremoto de subducción en la laguna sísmica actual de 500 km que continua acumulando deformación elástica desde 1877.Depto. de Geodinámica, Estratigrafía y PaleontologíaFac. de Ciencias GeológicasTRUEFrench National Research Agencypu

    Evidence for a new shallow magma intrusion at La Soufrière of Guadeloupe (Lesser Antilles). Insights from long-term geochemical monitoring of halogen- rich hydrothermal fluids

    Get PDF
    International audienceMore than three decades of geochemical monitoring of hot springs and fumaroles of La Soufrière of Guadeloupe allows the construction of a working model of the shallow hydrothermal system. This system is delimited by the nested caldera structures inherited from the repeated flank collapse events and the present dome built during the last magmatic eruption (1530 AD) and which has been highly fractured by the subsequent phreatic or phreatomagmatic eruptions. Because it is confined into the low volume, highly compartmented and partially sealed upper edifice structure, the hydrothermal system is highly reactive to perturbations in the volcanic activity (input of deep magmatic fluids), the edifice structure (sealing and fracturing) and meteorology (wet tropical regime). The current unrest, which began with a mild reactivation of fumarolic activity in 1990, increased markedly in 1992 with seismic swarms and an increase of degassing from the summit of the dome. In 1997 seismic activity increased further and was accompanied by a sudden high-flux HCl-rich gas from summit fumaroles. We focus on the interpretation of the time-series of the chemistry and temperature of fumarolic gases and hot springs as well as the relative behaviours of halogens (F, Cl, Br and I). This extensive geochemical time-series shows that the deep magmatic fluids have undergone large changes in composition due to condensation and chemical interaction with shallow groundwater (scrubbing). It is possible to trace back these processes and the potential contribution of a deep magmatic source using a limited set of geochemical time series: T, CO2 and total S content in fumaroles, T and Cl- in hot springs and the relative fractionations between F, Cl, Br and I in both fluids. Coupling 35 years of geochemical data with meteorological rainfall data and models of ion transport in the hydrothermal aquifers has allowed us to identify a series of magmatic gas pulses into the hydrothermal system since the 1976-1977 crisis. The contrasting behaviours of S- and Cl- bearing species in fumarolic gas and in thermal springs suggests that the current activity is the result of a new magma intrusion which was progressively emplaced at shallow depth since ~1992. Although it might still be evolving, the characteristics of this new intrusion indicate that it hasalready reached a magnitude similar to the intrusion that was emplaced during the 1976-1977 eruptive crisis. The assessment of potential hazards associated with evolution of the current unrest must consider the implications of recurrent intrusion and further pressurization of the hydrothermal system on the likelihood of renewed phreatic explosive activity. Moreover, the role of hydrothermal pressurization on the basal friction along low-strength layers within the upper part of the edifice must be evaluated with regards to partial flank collapse. At this stage enhanced monitoring, research, and data analysis is required to quantify the uncertainties related to future scenarios of renewed eruptive activity and magmatic evolution

    Empirical model for rapid macroseismic intensities prediction in Guadeloupe and Martinique Modèle empirique pour la prédiction rapide des intensités macrosismiques en Guadeloupe et Martinique

    Get PDF
    International audienceWe describe a simple model for prediction of macroseismic intensities adapted to Guadeloupe and Martinique (Lesser Antilles), based on a combination of peak ground acceleration (PGA) predictive equation and a forward relation between acceleration and intensity. The PGA predictive equation is built from a 3-parameter functional form constrained by measurements from permanent accelerometer stations, mostly associated with Les Saintes crustal earthquake (21/11/2004, Mw = 6:3) and its many aftershocks. The forward intensity model is checked on a database of recent instrumental events of various origins with magnitudes 1.6 to 7.4, distances from 4 to 300 km, and observed intensities from I to VIII. Global sigma residual equals 0.8 in the MSK scale, suggesting a larger applicability range than the intermediate PGA predictive equation. The model is presently used by the French Lesser Antilles observatories to produce automatic reports for earthquakes potentially felt

    Twenty-five years of geodetic measurements along the Tadjoura-Asal rift system, Djibouti, East Africa

    No full text
    International audienceSince most of Tadjoura-Asal rift system sits on dry land in the Afar depression near the triple junction between the Arabia, Somalia, and Nubia plates, it is an ideal natural laboratory for studying rifting processes. We analyze these processes in light of a time series of geodetic measurements from 1978 through. A network of about 30 GPS sites covers the Republic of Djibouti. Additional points were also measured in Yemen and Ethiopia. Stations lying in the Danakil block have almost the same velocity as Arabian plate, indicating that opening near the southern tip of the Red Sea is almost totally accommodated in the Afar depression. Inside Djibouti, the Asal-Ghoubbet rift system accommodates 16 ± 1 mm/yr of opening perpendicular to the rift axis and exhibits a pronounced asymmetry with essentially null deformation on its southwestern side and significant deformation on its northeastern side. This rate, slightly higher than the large-scale Arabia-Somalia motion (13 ± 1 mm/yr), suggests transient variations associated with relaxation processes following the Asal-Ghoubbet seismovolcanic sequence of 1978. Inside the rift, the deformation pattern exhibits a clear two-dimensional pattern. Along the rift axis, the rate decreases to the northwest, suggesting propagation in the same direction. Perpendicular to the rift axis, the focus of the opening is clearly shifted to the northeast, relative to the topographic rift axis, in the ''Petit Rift,'' a rift-in-rift structure, containing most of the active faults and the seismicity. Vertical motions, measured by differential leveling, show the same asymmetric pattern with a bulge of the northeastern shoulder. Although the inner floor of the rift is subsiding with respect to the shoulders, all sites within the rift system show uplift at rates varying from 0 to 10 mm/yr with respect to a far-field reference outside the rift

    Current deformation in Central Afar and triple junction kinematics deduced from GPS and InSAR measurements

    Get PDF
    Kinematics of divergent boundaries and Rift-Rift-Rift junctions are classically studied using long-term geodetic observations. Since significant magma-related displacements are expected, short-term deformation provides important constraints on the crustal mechanisms involved both in active rifting and in transfer of extensional deformation between spreading axes. Using InSAR and GPS data, we analyse the surface deformation in the whole Central Afar region in detail, focusing on both the extensional deformation across the Quaternary magmato-tectonic rift segments, and on the zones of deformation transfer between active segments and spreading axes. The largest deformation occurs across the two recently activated Asal-Ghoubbet (AG) and Manda Hararo-Dabbahu (MH-D) magmato-tectonic segments with very high strain rates, whereas the other Quaternary active segments do not concentrate any large strain, suggesting that these rifts are either sealed during interdyking periods or not mature enough to remain a plate boundary. Outside of these segments, the GPS horizontal velocity field shows a regular gradient following a clockwise rotation of the displacements from the Southeast to the East of Afar, with respect to Nubia. Very few shallow creeping structures can be identified as well in the InSAR data. However, using these data together with the strain rate tensor and the rotations rates deduced from GPS baselines, the present-day strain field over Central Afar is consistent with the main tectonic structures, and therefore with the long-term deformation. We investigate the current kinematics of the triple junction included in our GPS data set by building simple block models. The deformation in Central Afar can be described by adding a central microblock evolving separately from the three surrounding plates. In this model, the northern block boundary corresponds to a deep EW-trending trans-tensional dislocation, locked from the surface to 10–13 km and joining at depth the active spreading axes of the Red Sea and the Aden Ridge, from AG to MH-D rift segments. Over the long-term, this plate configuration could explain the presence of the en-échelon magmatic basins and subrifts. However, the transient behaviour of the spreading axes implies that the deformation in Central Afar evolves depending on the availability of magma supply within the well-established segments

    Asperities and barriers on the seismogenic zone in North Chile: state-of-the-art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data

    Get PDF
    The Mw 7.7 2007 November 14 earthquake had an epicentre located close to the city of Tocopilla, at the southern end of a known seismic gap in North Chile. Through modelling of Global Positioning System (GPS) and radar interferometry (InSAR) data, we show that this event ruptured the deeper part of the seismogenic interface (30–50 km) and did not reach the surface. The earthquake initiated at the hypocentre and was arrested ~150 km south, beneath the Mejillones Peninsula, an area already identified as an important structural barrier between two segments of the Peru–Chile subduction zone. Our preferred models for the Tocopilla main shock show slip concentrated in two main asperities, consistent with previous inversions of seismological data. Slip appears to have propagated towards relatively shallow depths at its southern extremity, under the Mejillones Peninsula. Our analysis of post-seismic deformation suggests that small but still significant post-seismic slip occurred within the first 10 d after the main shock, and that it was mostly concentrated at the southern end of the rupture. The post-seismic deformation occurring in this period represents ~12–19 per cent of the coseismic deformation, of which ~30–55 per cent has been released aseismically. Post-seismic slip appears to concentrate within regions that exhibit low coseismic slip, suggesting that the afterslip distribution during the first month of the post-seismic interval complements the coseismic slip. The 2007 Tocopilla earthquake released only ~2.5 per cent of the moment deficit accumulated on the interface during the past 130 yr and may be regarded as a possible precursor of a larger subduction earthquake rupturing partially or completely the 500-km-long North Chile seismic gap

    Profiling of the BRCA1 transcriptome through microarray and ChIP-chip analysis

    Get PDF
    A role for BRCA1 in the direct and indirect regulation of transcription is well established. However, a comprehensive view of the degree to which BRCA1 impacts transcriptional regulation on a genome-wide level has not been defined. We performed genome-wide expression profiling and ChIP-chip analysis, comparison of which revealed that although BRCA1 depletion results in transcriptional changes in 1294 genes, only 44 of these are promoter bound by BRCA1. However, 27% of these transcripts were linked to transcriptional regulation possibly explaining the large number of indirect transcriptional changes observed by microarray analysis. We show that no specific consensus sequence exists for BRCA1 DNA binding but rather demonstrate the presence of a number of known and novel transcription factor (TF)- binding sites commonly found on BRCA1 bound promoters. Co-immunoprecipitations confirmed that BRCA1 interacts with a number of these TFs including AP2-α, PAX2 and ZF5. Finally, we show that BRCA1 is bound to a subset of promoters of genes that are not altered by BRCA1 loss, but are transcriptionally regulated in a BRCA1-dependent manner upon DNA damage. These data suggest a model, whereby BRCA1 is present on defined promoters as part of an inactive complex poised to respond to various genotoxic stimuli

    Customized Treatment in Non-Small-Cell Lung Cancer Based on EGFR Mutations and BRCA1 mRNA Expression

    Get PDF
    BACKGROUND: Median survival is 10 months and 2-year survival is 20% in metastatic non-small-cell lung cancer (NSCLC) treated with platinum-based chemotherapy. A small fraction of non-squamous cell lung cancers harbor EGFR mutations, with improved outcome to gefitinib and erlotinib. Experimental evidence suggests that BRCA1 overexpression enhances sensitivity to docetaxel and resistance to cisplatin. RAP80 and Abraxas are interacting proteins that form complexes with BRCA1 and could modulate the effect of BRCA1. In order to further examine the effect of EGFR mutations and BRCA1 mRNA levels on outcome in advanced NSCLC, we performed a prospective non-randomized phase II clinical trial, testing the hypothesis that customized therapy would confer improved outcome over non-customized therapy. In an exploratory analysis, we also examined the effect of RAP80 and Abraxas mRNA levels. METHODOLOGY/PRINCIPAL FINDINGS: We treated 123 metastatic non-squamous cell lung carcinoma patients using a customized approach. RNA and DNA were isolated from microdissected specimens from paraffin-embedded tumor tissue. Patients with EGFR mutations received erlotinib, and those without EGFR mutations received chemotherapy with or without cisplatin based on their BRCA1 mRNA levels: low, cisplatin plus gemcitabine; intermediate, cisplatin plus docetaxel; high, docetaxel alone. An exploratory analysis examined RAP80 and Abraxas expression. Median survival exceeded 28 months for 12 patients with EGFR mutations, and was 11 months for 38 patients with low BRCA1, 9 months for 40 patients with intermediate BRCA1, and 11 months for 33 patients with high BRCA1. Two-year survival was 73.3%, 41.2%, 15.6% and 0%, respectively. Median survival was influenced by RAP80 expression in the three BRCA1 groups. For example, for patients with both low BRCA1 and low RAP80, median survival exceeded 26 months. RAP80 was a significant factor for survival in patients treated according to BRCA1 levels (hazard ratio, 1.3 [95% CI, 1-1.7]; P = 0.05). CONCLUSIONS/SIGNIFICANCE: Chemotherapy customized according to BRCA1 expression levels is associated with excellent median and 2-year survival for some subsets of NSCLC patients , and RAP80 could play a crucial modulating effect on this model of customized chemotherapy. TRIAL REGISTRATION: (ClinicalTrials.gov) NCT00883480
    corecore