96 research outputs found

    Symplasmic transport and phloem loading in gymnosperm leaves

    Get PDF
    Despite more than 130 years of research, phloem loading is far from being understood in gymnosperms. In part this is due to the special architecture of their leaves. They differ from angiosperm leaves among others by having a transfusion tissue between bundle sheath and the axial vascular elements. This article reviews the somewhat inaccessible and/or neglected literature and identifies the key points for pre-phloem transport and loading of photoassimilates. The pre-phloem pathway of assimilates is structurally characterized by a high number of plasmodesmata between all cell types starting in the mesophyll and continuing via bundle sheath, transfusion parenchyma, Strasburger cells up to the sieve elements. Occurrence of median cavities and branching indicates that primary plasmodesmata get secondarily modified and multiplied during expansion growth. Only functional tests can elucidate whether this symplasmic pathway is indeed continuous for assimilates, and if phloem loading in gymnosperms is comparable with the symplasmic loading mode in many angiosperm trees. In contrast to angiosperms, the bundle sheath has properties of an endodermis and is equipped with Casparian strips or other wall modifications that form a domain border for any apoplasmic transport. It constitutes a key point of control for nutrient transport, where the opposing flow of mineral nutrients and photoassimilates has to be accommodated in each single cell, bringing to mind the principle of a revolving door. The review lists a number of experiments needed to elucidate the mode of phloem loading in gymnosperms

    Successive Cambia: A Developmental Oddity or an Adaptive Structure?

    Get PDF
    BackgroundSecondary growth by successive cambia is a rare phenomenon in woody plant species. Only few plant species, within different phylogenetic clades, have secondary growth by more than one vascular cambium. Often, these successive cambia are organised concentrically. In the mangrove genus Avicennia however, the successive cambia seem to have a more complex organisation. This study aimed (i) at understanding the development of successive cambia by giving a three-dimensional description of the hydraulic architecture of Avicennia and (ii) at unveiling the possible adaptive nature of growth by successive cambia through a study of the ecological distribution of plant species with concentric internal phloem.ResultsAvicennia had a complex network of non-cylindrical wood patches, the complexity of which increased with more stressful ecological conditions. As internal phloem has been suggested to play a role in water storage and embolism repair, the spatial organisation of Avicennia wood could provide advantages in the ecologically stressful conditions species of this mangrove genus are growing in. Furthermore, we could observe that 84.9% of the woody shrub and tree species with concentric internal phloem occurred in either dry or saline environments strengthening the hypothesis that successive cambia provide the necessary advantages for survival in harsh environmental conditions.ConclusionsSuccessive cambia are an ecologically important characteristic, which seems strongly related with water-limited environments

    Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms

    Get PDF
    Shape-changing materials open an entirely new solution space for a wide range of disciplines: from architecture that responds to the environment and medical devices that unpack inside the body, to passive sensors and novel robotic actuators. While synthetic shape-changing materials are still in their infancy, studies of biological morphing materials have revealed key paradigms and features which underlie efficient natural shape-change. Here, we review some of these insights and how they have been, or may be, translated to artificial solutions. We focus on soft matter due to its prevalence in nature, compatibility with users and potential for novel design. Initially, we review examples of natural shape-changing materials—skeletal muscle, tendons and plant tissues—and compare with synthetic examples with similar methods of operation. Stimuli to motion are outlined in general principle, with examples of their use and potential in manufactured systems. Anisotropy is identified as a crucial element in directing shape-change to fulfil designed tasks, and some manufacturing routes to its achievement are highlighted. We conclude with potential directions for future work, including the simultaneous development of materials and manufacturing techniques and the hierarchical combination of effects at multiple length scales.</p

    New handbook for standardised measurement of plant functional traits worldwide

    Full text link

    Hydraulic design of leaves: insights from rehydration kinetics

    No full text
    We examined the leaf hydraulic design in 10 species based on their rehydration kinetics. In all cases, a biphasic response described the temporal pattern of water uptake, with time constants of ~30 to 800 s and ~800 to 8000 s. The time constants of the fast phase were significantly shorter in the six angiosperms (30 to 110 s) compared with the two singleveined conifer species (>400 s) examined, while the two multi-veined gymnosperm species, Gnetum gnemon and Ginkgo biloba, had time constants for the fast phase of ~150 s. Among angiosperm species, the fast phase constituted 50–90% of the total water absorbed, whereas in gymnosperms 70–90% of the water uptake could be assigned to the slow phase. In the four gymnosperms, the relative water uptake corresponding to the fast phase matched to a good degree the relative volume of the venation and bundle sheath extension; whereas in the angiosperm species, the relatively larger water influx during the fast phase was similar in relative volume to the combined venation, bundle sheath extension, epidermis and (in four species) the spongy mesophyll. This suggests a general trend from a design in which the epidermis is weakly connected to the veins (all four gymnosperms), to a design with good hydraulic connection between epidermis and veins that largely bypasses the mesophyll (four of six angiosperms), to a design in which almost the entire leaf appears to function as a single pool
    • …
    corecore