29 research outputs found

    Infrared emission from interstellar dust cloud with two embedded sources: IRAS 19181+1349

    Get PDF
    Mid and far infrared maps of many Galactic star forming regions show multiple peaks in close proximity, implying more than one embedded energy sources. With the aim of understanding such interstellar clouds better, the present study models the case of two embedded sources. A radiative transfer scheme has been developed to deal with an uniform density dust cloud in a cylindrical geometry, which includes isotropic scattering in addition to the emission and absorption processes. This scheme has been applied to the Galactic star forming region associated with IRAS 19181+1349, which shows observational evidence for two embedded energy sources. Two independent modelling approaches have been adopted, viz., to fit the observed spectral energy distribution (SED) best; or to fit the various radial profiles best, as a function of wavelength. Both the models imply remarkably similar physical parameters.Comment: 17 pages, 6 Figures, uses epsf.sty. To appear in Journal of Astronophysics & Astronom

    GMRT observations of the field of INTEGRAL X-ray sources- II (newly discovered hard X-ray sources)

    Full text link
    We have conducted low-frequency radio observations with the Giant Metrewave Radio Telescope (GMRT) of 40 new hard X-ray sources discovered by the INTEGRAL satellite. This survey was conducted in order, to study radio emissions from these sources, to provide precise position and to identify new microquasar candidates. From our observations we find that 24 of the X-ray sources have radio candidates within the INTEGRAL error circle. Based on the radio morphology, variability and information available from different wavelengths, we categorize them as seventeen Galactic sources (4 unresolved, 7 extended, 6 extended sources in diffuse region) and seven extragalactic sources (2 unresolved, 5 extended). Detailed account for seventeen of these sources was presented in earlier paper. Based on the radio data for the remaining sources at 0.61 GHz, and the available information from NVSS, DSS, 2MASS and NED, we have identified possible radio counterparts for the hard X-ray sources. The three unresolved sources, viz IGR J17303-0601, IGR J17464-3213, and IGR J18406-0539 are discussed in detail. These sources have been identified as X-ray binaries with compact central engine and variable in X-ray and in the radio, and are most likely microquasar candidates. The remaining fourteen sources have extended radio morphology and are either diffuse Galactic regions or extragalactic in origin.Comment: 9 pages, 7 figures, submitted to A&A. submitted to A&

    Radio observations of the planetary nebula around the OH/IR Star OH354.88-0.54 (V1018 Sco)

    Full text link
    We present radio observations of the unique, recently formed, planetary nebula (PN) associated with a very long-period OH/IR variable star V1018 Sco that is unequivocally still in its asymptoticgiant branch phase. Two regions within the optical nebula are clearly detected in nonthermal radio continuum emission, with radio spectral indices comparable to those seen in colliding-wind Wolf-Rayet binaries. We suggest that these represent shocked interactions between the hot, fast stellar wind and the cold nebular shell that represents the PN's slow wind moving away from the central star. This same interface produces both synchrotron radio continuum and the optical PN emission. The fast wind is neither spherical in geometry nor aligned withany obvious optical or radio axis. We also report the detection of transient H2O maser emission in this nebula.Comment: 11 pages, LaTeX (mn2e.cls), incl. 9 PostScript (ps or eps) figures and 2 tables. Accepted by MNRA

    Far and mid infrared observations of two ultracompact H II regions and one compact CO clump

    Get PDF
    Two ultracompact H II regions (IRAS 19181+1349 and 20178+4046) and one compact molecular clump (20286+4105) have been observed at far infrared wavelengths using the TIFR 1 m balloon-borne telescope and at mid infrared wavelengths using ISO. Far infrared observations have been made simultaneously in two bands with effective wavelengths of ~ 150 and ~ 210 micron, using liquid 3He cooled bolometer arrays. ISO observations have been made in seven spectral bands using the ISOCAM instrument; four of these bands cover the emission from Polycyclic Aromatic Hydrocarbon (PAH) molecules. In addition, IRAS survey data for these sources in the four IRAS bands have been processed using the HIRES routine. In the high resolution mid infrared maps as well as far infrared maps multiple embedded energy sources have been resolved. There are structural similarities between the images in the mid infrared and the large scale maps in the far infrared bands, despite very different angular resolutions of the two. Dust temperature and optical depth (tau_150 um) maps have also been generated using the data from balloon-borne observations. Spectral energy distributions (SEDs) for these sources have been constructed by combining the data from all these observations. Radiation transfer calculations have been made to understand these SEDs. Parameters for the dust envelopes in these sources have been derived by fitting the observed SEDs. In particular, it has been found that radial density distribution for three sources is diffrent. Whereas in the case of IRAS 20178+4046, a steep distribution of the form r^-2 is favoured, for IRAS 20286+4105 it is r^-1 and for IRAS 19181+1349 it the uniform distribution (r^0). Line ratios for PAH bands have generally been found to be similar to those for other compact H II regions but different from general H II regions.Comment: To appear in Astronomy & Astrophysics; (19 pages including 14 Figures and 6 Tables

    Recent star formation in the inner Galactic Bulge seen by ISOGAL. I - Classification of bright mid-IR sources in a test field

    Full text link
    Context: The stellar populations in the central region of the Galaxy are poorly known because of the high visual extinction and very great source density in this direction. Aims: To use recent infrared surveys for studying the dusty stellar objects in this region. Methods: We analyse the content of a 20x20 arcmin^2 field centred at (l,b)=(-0.27,-0.06) observed at 7 and 15 microns as part of the ISOGAL survey. These ISO observations are more than an order of magnitude better in sensitivity and spatial resolution than the IRAS observations. The sources are cross-associated with other catalogues to identify various types of objects. We then derive criteria to distinguish young objects from post-main sequence stars. Results: We find that a sample of about 50 young stellar objects and ultra-compact HII regions emerges, out of a population of evolved AGB stars. We demonstrate that the sources colours and spatial extents, as they appear in the ISOGAL catalogue, possibly complemented with MSX photometry at 21 microns, can be used to determine whether the ISOGAL sources brighter than 300 mJy at 15 microns (or [15] < 4.5 mag) are young objects or late-type evolved stars.Comment: 15 pages, 12 figures. Accepted for publication in Astronomy and Astrophysic

    Radio sources at low Galactic latitudes

    Full text link
    We present high-resolution radio observations of a sample of 65 radio sources at low Galactic latitudes. The sources were all observed at 5 GHz with the Very Large Array A-array. MERLIN observations at 5 GHz of the ultracompact HII region G34.26+0.15 and one of the extragalactic sources, B1857-000, are also presented, as are GMRT observations of HI in the direction of three sources, B1801-203, B1802-196 and B1938+229. These observations were made with the objectives of (i) finding compact components suitable for studying the effects of interstellar scattering at lower frequencies, (ii) identifying high surface-brightness lobes of background radio sources to probe the Galactic magnetic field on different scales via polarization observations, and (iii) searching for young supernova remnants. We discuss the nature of the sources found to have shell or shell-like structure and exhibiting both thermal and non-thermal spectra. Of the remaining sources, B1749-281 is coincident within the positional errors of a known pulsar, not detected earlier at 5 GHz. The rest are likely to be background extragalactic objects.Comment: 12 pages, 6 figures (most with multiple images), 1 table. Accepted for publicaton in MNRA

    GMRT observations of four suspected supernova remnants near the Galactic Centre

    Full text link
    We have observed two fields - Field-I (l=3.2 degrees, b=-1.0 degree) and Field-II (l=356.8 degrees, b=-0.1 degree) with the Giant Metrewave Radio Telescope (GMRT) at 330 MHz. In the first field, we have studied the candidate supernova remnant (SNR) G3.1-0.6 and based on its observed morphology, spectral index and polarisation confirmed it to be an SNR. We find this supernova to have a double ring appearance with a strip of emission on it's western side passing through it's centre. We have discovered two extended curved objects in the second field, which appears to be part of a large shell like structure. It is possibly the remains of an old supernova in the region. Three suspected supernova remnants, G356.3-0.3, G356.6+0.1 and G357.1-0.2 detected in the MOST 843 MHz survey of the Galactic Centre region appears to be located on this shell like structure. While both G356.3-0.3 and G356.6+0.1 seem to be parts of this shell, G357.1-0.2 which has a steeper spectrum above 1 GHz, could be a background SNR seen through the region. Our HI absorption observation towards the candidate SNR G357.1-0.2 indicates that it is at a distance of more than 6 kpc from us.Comment: 13 pages, 13 figures, accepted for publication in MNRA

    The earliest phases of high-mass star formation: a 3 square degree millimeter continuum mapping of Cygnus X

    Get PDF
    We have made an extensive 1.2mm continuum mosaicing study of the Cygnus X molecular cloud complex using the MAMBO cameras at the IRAM 30 m telescope. We then compared our mm maps with mid-IR images, and have made SiO(2-1) follow-up observations of the best candidate progenitors of high-mass stars. Our complete study of Cygnus X provides, for the first time, an unbiased census of massive young stellar objects. We discover 129 massive dense cores, among which 42 are probable precursors of high-mass stars. Our study qualifies 17 cores as good candidates for hosting massive IR-quiet protostars, while up to 25 cores potentially host high-luminosity IR protostars. We fail to discover the high-mass analogs of pre-stellar dense cores in CygnusX, but find several massive starless clumps that might be gravitationally bound. Since our sample is derived from a single molecular complex and covers every embedded phase of high-mass star formation, it gives the first statistical estimates of their lifetime. In contrast to what is found for low-mass class 0 and class I phases, the IR-quiet protostellar phase of high-mass stars may last as long as their better-known high-luminosity IR phase. The statistical lifetimes of high-mass protostars and pre-stellar cores (~ 3 x 10^4 yr and < 10^3 yr) in Cygnus X are one and two order(s) of magnitude smaller, respectively, than what is found in nearby, low-mass star-forming regions. We therefore propose that high-mass pre-stellar and protostellar cores are in a highly dynamic state, as expected in a molecular cloud where turbulent processes dominate.Comment: 32 pages, 62 figures to be published in Astronomy & Astrophysics journa

    Extragalactic sources towards the central region of the Galaxy

    Full text link
    We have observed a sample of 64 small diameter sources towards the central -6 degree < l< 6 degree, -2 degree < b < 2 degree of the Galaxy with the aim of studying the Faraday rotation measure near the Galactic Centre (GC) region. All the sources were observed at 6 and 3.6 cm wavelengths using the ATCA and the VLA. Fifty nine of these sources are inferred to be extragalactic. The observations presented here constitute the first systematic study of the radio polarisation properties of the background sources towards this direction and increases the number of known extragalactic radio sources in this part of the sky by almost an order of magnitude. Based on the morphology, spectral indices and lack of polarised emission, we identify four Galactic HII regions in the sample.Comment: 24 pages, 67 figures, published earlier in MNRA

    Understanding the Spectral Energy Distributions of the Galactic Star Forming Regions IRAS 18314-0720, 18355-0532 & 18316-0602

    Get PDF
    Embedded Young Stellar Objects (YSO) in dense interstellar clouds is treated self-consistently to understand their spectral energy distributions (SED). Radiative transfer calculations in spherical geometry involving the dust as well as the gas component, have been carried out to explain observations covering a wide spectral range encompassing near-infrared to radio continuum wavelengths. Various geometric and physical details of the YSOs are determined from this modelling scheme. In order to assess the effectiveness of this self-consistent scheme, three young Galactic star forming regions associated with IRAS 18314-0720, 18355-0532 and 18316-0602 have been modelled as test cases. They cover a large range of luminosity (\approx 40). The modelling of their SEDs has led to information about various details of these sources, e.g. embedded energy source, cloud structure & size, density distribution, composition & abundance of dust grains etc. In all three cases, the best fit model corresponds to the uniform density distribution.Comment: AAMS style manuscript with 3 tables (in a separate file) and 4 figures. To appear in Journal of Astronophysics & Astronom
    corecore