Embedded Young Stellar Objects (YSO) in dense interstellar clouds is treated
self-consistently to understand their spectral energy distributions (SED).
Radiative transfer calculations in spherical geometry involving the dust as
well as the gas component, have been carried out to explain observations
covering a wide spectral range encompassing near-infrared to radio continuum
wavelengths. Various geometric and physical details of the YSOs are determined
from this modelling scheme. In order to assess the effectiveness of this
self-consistent scheme, three young Galactic star forming regions associated
with IRAS 18314-0720, 18355-0532 and 18316-0602 have been modelled as test
cases. They cover a large range of luminosity (≈ 40). The modelling of
their SEDs has led to information about various details of these sources, e.g.
embedded energy source, cloud structure & size, density distribution,
composition & abundance of dust grains etc. In all three cases, the best fit
model corresponds to the uniform density distribution.Comment: AAMS style manuscript with 3 tables (in a separate file) and 4
figures. To appear in Journal of Astronophysics & Astronom