83 research outputs found
PD_NGSAtlas: a reference database combining next-generation sequencing epigenomic and transcriptomic data for psychiatric disorders
Background: Psychiatric disorders such as schizophrenia (SZ) and bipolar disorder (BP) are projected to lead the global disease burden within the next decade. Several lines of evidence suggest that epigenetic- or genetic-mediated dysfunction is frequently present in these disorders. To date, the inheritance patterns have been complicated by the problem of integrating epigenomic and transcriptomic factors that have yet to be elucidated. Therefore, there is a need to build a comprehensive database for storing epigenomic and transcriptomic data relating to psychiatric disorders.
Description: We have developed the PD_NGSAtlas, which focuses on the efficient storage of epigenomic and transcriptomic data based on next-generation sequencing and on the quantitative analyses of epigenetic and transcriptional alterations involved in psychiatric disorders. The current release of the PD_NGSAtlas contains 43 DNA methylation profiles and 37 transcription profiles detected by MeDIP-Seq and RNA-Seq, respectively, in two distinct brain regions and peripheral blood of SZ, BP and non-psychiatric controls. In addition to these data that were generated in-house, we have included, and will continue to include, published DNA methylation and gene expression data from other research groups, with a focus on psychiatric disorders. A flexible query engine has been developed for the acquisition of methylation profiles and transcription profiles for special genes or genomic regions of interest of the selected samples. Furthermore, the PD_NGSAtlas offers online tools for identifying aberrantly methylated and expressed events involved in psychiatric disorders. A genome browser has been developed to provide integrative and detailed views of multidimensional data in a given genomic context, which can help researchers understand molecular mechanisms from epigenetic and transcriptional perspectives. Moreover, users can download the methylation and transcription data for further analyses.
Conclusions: The PD_NGSAtlas aims to provide storage of epigenomic and transcriptomic data as well as quantitative analyses of epigenetic and transcriptional alterations involved in psychiatric disorders. The PD_NGSAtlas will be a valuable data resource and will enable researchers to investigate the pathophysiology and aetiology of disease in detail. The database is available at http://bioinfo.hrbmu.edu.cn/pd_ngsatlas/
Towards Real-World Writing Assistance: A Chinese Character Checking Benchmark with Faked and Misspelled Characters
Writing assistance is an application closely related to human life and is
also a fundamental Natural Language Processing (NLP) research field. Its aim is
to improve the correctness and quality of input texts, with character checking
being crucial in detecting and correcting wrong characters. From the
perspective of the real world where handwriting occupies the vast majority,
characters that humans get wrong include faked characters (i.e., untrue
characters created due to writing errors) and misspelled characters (i.e., true
characters used incorrectly due to spelling errors). However, existing datasets
and related studies only focus on misspelled characters mainly caused by
phonological or visual confusion, thereby ignoring faked characters which are
more common and difficult. To break through this dilemma, we present
Visual-C, a human-annotated Visual Chinese Character Checking dataset with
faked and misspelled Chinese characters. To the best of our knowledge,
Visual-C is the first real-world visual and the largest human-crafted
dataset for the Chinese character checking scenario. Additionally, we also
propose and evaluate novel baseline methods on Visual-C. Extensive
empirical results and analyses show that Visual-C is high-quality yet
challenging. The Visual-C dataset and the baseline methods will be publicly
available to facilitate further research in the community.Comment: Work in progres
Nanotechnology in peripheral nerve repair and reconstruction
The recent progress in biomaterials science and development of tubular conduits (TCs) still fails in solving the current challenges in the treatment of peripheral nerve injuries (PNIs), in particular when disease-related and long-gap defects need to be addressed. Nanotechnology-based therapies that seemed unreachable in the past are now being considered for the repair and reconstruction of PNIs, having the power to deliver bioactive molecules in a controlled manner, to tune cellular behavior, and ultimately guide tissue regeneration in an effective manner. It also offers opportunities in the imaging field, with a degree of precision never achieved before, which is useful for diagnosis, surgery and in the patientĂą s follow-up. Nanotechnology approaches applied in PNI regeneration and theranostics, emphasizing the ones that are moving from the lab bench to the clinics, are herein overviewed.The authors acknowledge the Portuguese Foundation for Science and Technology
(FCT) for the financial support provided to Joaquim M. Oliveira (IF/01285/2015) and
Joana Silva-Correia (IF/00115/2015) under the program âInvestigador FCTâ.info:eu-repo/semantics/publishedVersio
Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis
Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3â5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe
Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis
Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (Nâ=â1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3â5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk
Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis
Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007â2013 under grant agreement no. HEALTH-F2-2013â601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundationâs Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1â19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska LĂ€karesĂ€llskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215â2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Unionâs Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD
Canagliflozin and renal outcomes in type 2 diabetes and nephropathy
BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodiumâglucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with reninâangiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years
Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis
Funding Information: GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007â2013 under grant agreement no. HEALTH-F2-2013â601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundationâs Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1â19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska LĂ€karesĂ€llskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215â2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Unionâs Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file : Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services. Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3â5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe
- âŠ