77 research outputs found

    Influential Article Review - Multifaceted Analysis of the Efficacy of a Liner Shipping Network

    Get PDF
    This paper examines logistics. We present insights from a highly influential paper. Here are the highlights from this paper: This paper deals with multidimensional examination of performances of a trunk line/route of liner container-shipping network serving an intercontinental supply chain by the conventional (Panamax Max) and mega (ULC - Ultra Large Container) ships. The trunk line/route of the network includes the supplier and the customer seaport of freight shipments consolidated into containers (TEU (Twenty Foot Equivalent Unit)), and the container ships operated by liner shipping carriers and/or their alliances providing transport services between them. The supplier and the customer seaport can be either the main seaports of the line or the hubs of the H&S (Hub-and-Spoke) network of particular liner container-shipping carriers. The multidimensional examination implies defining and developing the analytical models of indicators of the trunk line’s infrastructural, technical/technological, operational, economic, environmental, and social performances and their application to the selected real-life case. The infrastructural performances relate to the characteristics of infrastructure (berths) and container terminals in the seaports at both ends of the line. The technical/technological performances reflect the characteristics of facilities and equipment for loading/unloading and storing TEU shipments in these terminals, and that of the container ships transporting them. The operational performances include the transport service frequency, size, transport work and technical productivity of the deployed container ship fleet while serving a given volume of TEU flows during the specified time. The economic performances contain the inventory, handling, transport, and external costs of handling the TEU flows. The environmental performances relate to the fuel consumption and consequent emissions of GHG (GreenHouse Gases). Finally, the social performances in terms of impacts generally refer to noise, congestion, and safety. The models of indicators of performances have been applied to the liner container-shipping trunk line/route connecting East Asia and North Europe operated exclusively by two above-mentioned categories of ships according to the “what-if” scenario approach. The results have indicated the very high sensitivity of all considered indicators of performances to the category of deployed ships under given conditions. As well, they have shown to be dependent on each other – the operational on the technical/technological, and the economic, environmental, and social on the technical/technological and operational. For our overseas readers, we then present the insights from this paper in Spanish, French, Portuguese, and German

    Helical coherence of DNA in crystals and solution

    Get PDF
    The twist, rise, slide, shift, tilt and roll between adjoining base pairs in DNA depend on the identity of the bases. The resulting dependence of the double helix conformation on the nucleotide sequence is important for DNA recognition by proteins, packaging and maintenance of genetic material, and other interactions involving DNA. This dependence, however, is obscured by poorly understood variations in the stacking geometry of the same adjoining base pairs within different sequence contexts. In this article, we approach the problem of sequence-dependent DNA conformation by statistical analysis of X-ray and NMR structures of DNA oligomers. We evaluate the corresponding helical coherence length—a cumulative parameter quantifying sequence-dependent deviations from the ideal double helix geometry. We find, e.g. that the solution structure of synthetic oligomers is characterized by 100–200 Å coherence length, which is similar to ∼150 Å coherence length of natural, salmon-sperm DNA. Packing of oligomers in crystals dramatically alters their helical coherence. The coherence length increases to 800–1200 Å, consistent with its theoretically predicted role in interactions between DNA at close separations

    The burden of road traffic crashes, injuries and deaths in Africa:A systematic review and meta-analysis

    Get PDF
    Objective To estimate the burden of road traffic injuries and deaths for all road users and among different road user groups in Africa. Methods We searched MEDLINE, EMBASE, Global Health, Google Scholar, websites of African road safety agencies and organizations for registry- and population-based studies and reports on road traffic injury and death estimates in Africa, published between 1980 and 2015. Available data for all road users and by road user group were extracted and analysed. We conducted a random-effects meta-analysis and estimated pooled rates of road traffic injuries and deaths. Findings We identified 39 studies from 15 African countries. The estimated pooled rate for road traffic injury was 65.2 per 100000 population (95% confidence interval, CI: 60.8–69.5) and the death rate was 16.6 per 100 000 population (95% CI: 15.2–18.0). Road traffic injury rates increased from 40.7 per 100 000 population in the 1990s to 92.9 per 100 000 population between 2010 and 2015, while death rates decreased from 19.9 per 100 000 population in the 1990s to 9.3 per 100 000 population between 2010 and 2015. The highest road traffic death rate was among motorized four-wheeler occupants at 5.9 per 100 000 population (95% CI: 4.4–7.4), closely followed by pedestrians at 3.4 per 100 000 population (95% CI: 2.5–4.2). Conclusion The burden of road traffic injury and death is high in Africa. Since registry-based reports underestimate the burden, a systematic collation of road traffic injury and death data is needed to determine the true burden

    Biallelic loss-of-function variants in PLD1 cause congenital right-sided cardiac valve defects and neonatal cardiomyopathy

    Get PDF
    Congenital heart disease is the most common type of birth defect, accounting for one-third of all congenital anomalies. Using whole-exome sequencing of 2718 patients with congenital heart disease and a search in GeneMatcher, we identified 30 patients from 21 unrelated families of different ancestries with biallelic phospholipase D1 (PLD1) variants who presented predominantly with congenital cardiac valve defects. We also associated recessive PLD1 variants with isolated neonatal cardiomyopathy. Furthermore, we established that p.I668F is a founder variant among Ashkenazi Jews (allele frequency of ~2%) and describe the phenotypic spectrum of PLD1-associated congenital heart defects. PLD1 missense variants were overrepresented in regions of the protein critical for catalytic activity, and, correspondingly, we observed a strong reduction in enzymatic activity for most of the mutant proteins in an enzymatic assay. Finally, we demonstrate that PLD1 inhibition decreased endothelial-mesenchymal transition, an established pivotal early step in valvulogenesis. In conclusion, our study provides a more detailed understanding of disease mechanisms and phenotypic expression associated with PLD1 loss of function

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Evaluation of Three Stream Restoration Projects in Loyalsock Creek Watershed

    No full text
    During the past 10 years, fish habitat structures consisting of root wads, log vanes, mudsills and other constructed materials have been placed along streams and creeks in North Central PA ( Lycoming and Sullivan Counties). Three of the projects in the L
    corecore