2,239 research outputs found

    Gradient-based algorithm for determining tumor volumes in small animals using planar fluorescence imaging platform

    Get PDF
    Planar fluorescence imaging is widely used in biological research because of its simplicity, use of nonionizing radiation, and high-throughput data acquisition. In cancer research, where small animal models are used to study the in vivo effects of cancer therapeutics, the output of interest is often the tumor volume. Unfortunately, inaccuracies in determining tumor volume from surface-weighted projection fluorescence images undermine the data, and alternative physical or conventional tomographic approaches are prone to error or are tedious for most laboratories. Here, we report a method that uses a priori knowledge of a tumor xenograft model, a tumor-targeting near infrared probe, and a custom-developed image analysis planar view tumor volume algorithm (PV-TVA) to estimate tumor volume from planar fluorescence images. Our algorithm processes images obtained using near infrared light for improving imaging depth in tissue in comparison with light in the visible spectrum. We benchmarked our results against the actual tumor volume obtained from a standard water volume displacement method. Compared with a caliper-based method that has an average deviation from an actual volume of 18% (204.34 ± 115.35 mm(3)), our PV-TVA average deviation from the actual volume was 9% (97.24 ± 70.45 mm(3); P < .001). Using a normalization-based analysis, we found that bioluminescence imaging and PV-TVA average deviations from actual volume were 36% and 10%, respectively. The improved accuracy of tumor volume assessment from planar fluorescence images, rapid data analysis, and the ease of archiving images for subsequent retrieval and analysis potentially lend our PV-TVA method to diverse cancer imaging applications

    Antenatal atazanavir: a retrospective analysis of pregnancies exposed to atazanavir.

    Get PDF
    INTRODUCTION: There are few data regarding the tolerability, safety, or efficacy of antenatal atazanavir. We report our clinical experience of atazanavir use in pregnancy. METHODS: A retrospective medical records review of atazanavir-exposed pregnancies in 12 London centres between 2004 and 2010. RESULTS: There were 145 pregnancies in 135 women: 89 conceived whilst taking atazanavir-based combination antiretroviral therapy (cART), "preconception" atazanavir exposure; 27 started atazanavir-based cART as "first-line" during the pregnancy; and 29 "switched" to an atazanavir-based regimen from another cART regimen during pregnancy. Gastrointestinal intolerance requiring atazanavir cessation occurred in five pregnancies. Self-limiting, new-onset transaminitis was most common in first-line use, occurring in 11.0%. Atazanavir was commenced in five switch pregnancies in the presence of transaminitis, two of which discontinued atazanavir with persistent transaminitis. HIV-VL < 50 copies/mL was achieved in 89.3% preconception, 56.5% first-line, and 72.0% switch exposures. Singleton preterm delivery (<37 weeks) occurred in 11.7% preconception, 9.1% first-line, and 7.7% switch exposures. Four infants required phototherapy. There was one mother-to-child transmission in a poorly adherent woman. CONCLUSIONS: These data suggest that atazanavir is well tolerated and can be safely prescribed as a component of combination antiretroviral therapy in pregnancy

    Self-folding shape memory laminates for automated fabrication

    Get PDF
    Nature regularly uses self-folding as an efficient approach to automated fabrication. In engineered systems, however, the use of self-folding has been primarily restricted to the assembly of small structures using exotic materials and/or complex infrastructures. In this paper we present three approaches to the self-folding of structures using low-cost, rapid-prototyped shape memory laminates. These structures require minimal deployment infrastructure, and are activated by light, heat, or electricity. We compare the fabrication of a fundamental structure (a cube) using each approach, and test ways to control fold angles in each case. Finally, for each self-folding approach we present a unique structure that the approach is particularly suited to fold, and discuss the advantages and disadvantages of each approach.National Science Foundation (U.S.) (Award CCF-1138967)National Science Foundation (U.S.) (Award EFRI-1240383

    Elasticity of semiflexible polymers with and without self-interactions

    Full text link
    A {\it new} formula for the force vs extension relation is derived from the discrete version of the so called {\it worm like chain} model. This formula correctly fits some recent experimental data on polymer stretching and some numerical simulations with pairwise repulsive potentials. For a more realistic Lennard-Jones potential the agreement with simulations is found to be good when the temperature is above the Ξ\theta temperature. For lower temperatures a plateau emerges, as predicted by some recent experimental and theoretical results, and our formula gives good results only in the high force regime. We briefly discuss how other kinds of self-interactions are expected to affect the elasticity of the polymer.Comment: 8 pages, 10 figure

    Unraveling the Steric Link to Copper Precursor Decomposition: A Multi-Faceted Study for the Printing of Flexible Electronics

    Get PDF
    The field of printed electronics strives for lower processing temperatures to move toward flexible substrates that have vast potential: from wearable medical devices to animal tagging. Typically, ink formulations are optimized using mass screening and elimination of failures; as such, there are no comprehensive studies on the fundamental chemistry at play. Herein, findings which describe the steric link to decomposition profile: combining density functional theory, crystallography, thermal decomposition, mass spectrometry, and inkjet printing, are reported. Through the reaction of copper(II) formate with excess alkanolamines of varying steric bulk, tris-co-ordinated copper precursor ions: "[CuL3 ]," each with a formate counter-ion (1-3) are isolated and their thermal decomposition mass spectrometry profiles are collected to assess their suitability for use in inks (I1-3 ). Spin coating and inkjet printing of I1,2 provides an easily up-scalable method toward the deposition of highly conductive copper device interconnects (ρ = 4.7-5.3 × 10-7 Ω m; ≈30% bulk) onto paper and polyimide substrates and forms functioning circuits that can power light-emitting diodes. The connection among ligand bulk, coordination number, and improved decomposition profile supports fundamental understanding which will direct future design

    230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Costa, K. M., Hayes, C. T., Anderson, R. F., Pavia, F. J., Bausch, A., Deng, F., Dutay, J., Geibert, W., Heinze, C., Henderson, G., Hillaire-Marcel, C., Hoffmann, S., Jaccard, S. L., Jacobel, A. W., Kienast, S. S., Kipp, L., Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J. F., Mekik, F., Middleton, J. L., Missiaen, L., Not, C., Pichat, S., Robinson, L. F., Rowland, G. H., Roy-Barman, M., Alessandro, Torfstein, A., Winckler, G., & Zhou, Y. 230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean. Paleoceanography and Paleoclimatology, 35(2), (2020): e2019PA003820, doi:10.1029/2019PA003820.230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of 230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (>1,000 m water depth).We thank Zanna Chase and one anonymous reviewer for valuable feedback. K. M. C. was supported by a Postdoctoral Scholarship at WHOI. L. M. acknowledges funding from the Australian Research Council grant DP180100048. The contribution of C. T. H., J. F. M., and R. F. A. were supported in part by the U.S. National Science Foundation (US‐NSF). G. H. R. was supported by the Natural Environment Research Council (grant NE/L002434/1). S. L. J. acknowledges support from the Swiss National Science Foundation (grants PP002P2_144811 and PP00P2_172915). This study was supported by the Past Global Changes (PAGES) project, which in turn received support from the Swiss Academy of Sciences and the US‐NSF. This work grew out of a 2018 workshop in Aix‐Marseille, France, funded by PAGES, GEOTRACES, SCOR, US‐NSF, Aix‐Marseille UniversitĂ©, and John Cantle Scientific. All data are publicly available as supporting information to this document and on the National Center for Environmental Information (NCEI) at https://www.ncdc.noaa.gov/paleo/study/28791

    An ant colony-based semi-supervised approach for learning classification rules

    Get PDF
    Semi-supervised learning methods create models from a few labeled instances and a great number of unlabeled instances. They appear as a good option in scenarios where there is a lot of unlabeled data and the process of labeling instances is expensive, such as those where most Web applications stand. This paper proposes a semi-supervised self-training algorithm called Ant-Labeler. Self-training algorithms take advantage of supervised learning algorithms to iteratively learn a model from the labeled instances and then use this model to classify unlabeled instances. The instances that receive labels with high confidence are moved from the unlabeled to the labeled set, and this process is repeated until a stopping criteria is met, such as labeling all unlabeled instances. Ant-Labeler uses an ACO algorithm as the supervised learning method in the self-training procedure to generate interpretable rule-based models—used as an ensemble to ensure accurate predictions. The pheromone matrix is reused across different executions of the ACO algorithm to avoid rebuilding the models from scratch every time the labeled set is updated. Results showed that the proposed algorithm obtains better predictive accuracy than three state-of-the-art algorithms in roughly half of the datasets on which it was tested, and the smaller the number of labeled instances, the better the Ant-Labeler performance

    Effects of Rapid Heating on Solutionizing Characteristics of Al-Si-Mg Alloys Using a Fluidized Bed

    Get PDF
    Effects of rapid heat transfer using a fluidized bed on the heat-treating response of Al-Si-Mg alloys (both unmodified and Sr modified) were investigated. The heating rate in the fluidized bed is greater than in conventional air convective furnaces. Particle size analyses of eutectic Si showed that the high heating rate during fluidized bed solution heat treatment causes faster fragmentation and spherodization of Si particles compared to conventional air convective furnaces. The mechanism of Si fragmentation through fluidized bed processing is through both brittle fracture and neck formation and its propagation. In contrast to this, the mechanism of Si fragmentation using a conventional air convective furnace is through neck formation and propagation. The Sr-modified D357 alloy showed a faster spherodizing rate than the unmodified alloy. Thermal analyses showed an exothermic reaction during solution heat treatment using a fluidized bed due to recrystallization, and coarsening of eutectic Al grains. Whereas the alloy solutionized using a conventional air convective furnace showed two exothermic reactions, one due to annihilation of point defects and the other due to recrystallization, and coarsening of the eutectic grains in the aluminum matrix. The recrystallization temperature of the alloy solutionized in the fluidized bed is lower than those in the conventional air convective furnace. Both tensile strength and elongation of fluidized bed solutionized alloys are greater than those solutionized using the air convective furnace. The optimum heat-treatment time for T4 temper using a fluidized bed for unmodified and Sr-modified alloy was reduced to 60 and 30 minutes, respectively
    • 

    corecore