293 research outputs found
Scaling of anisotropy flows in intermediate energy heavy ion collisions
Anisotropic flows (, and ) of light nuclear clusters are
studied by a nucleonic transport model in intermediate energy heavy ion
collisions. The number-of-nucleon scalings of the directed flow () and
elliptic flow () are demonstrated for light nuclear clusters. Moreover,
the ratios of of nuclear clusters show a constant value of 1/2
regardless of the transverse momentum. The above phenomena can be understood by
the coalescence mechanism in nucleonic level and are worthy to be explored in
experiments.Comment: Invited talk at "IX International Conference on Nucleus-Nucleus
Collisions", Rio de Janeiro, Aug 28- Sept 1, 2006; to appear on the
proceeding issue in Nuclear Physics
Scaling of Anisotropic Flow and Momentum-Space Densities for Light Particles in Intermediate Energy Heavy Ion Collisions
Anisotropic flows ( and ) of light nuclear clusters are studied by
Isospin-Dependent Quantum Molecular Dynamics model for the system of Kr
+ Sn at intermediate energy and large impact parameters.
Number-of-nucleon scaling of the elliptic flow () are demonstrated for the
light fragments up to = 4, and the ratio of shows a constant
value of 1/2. In addition, the momentum-space densities of different clusters
are also surveyed as functions of transverse momentum, in-plane transverse
momentum and azimuth angle relative to the reaction plane. The results can be
essentially described by momentum-space power law. All the above phenomena
indicate that there exists a number-of-nucleon scaling for both anisotropic
flow and momentum-space densities for light clusters, which can be understood
by the coalescence mechanism in nucleonic degree of freedom for the cluster
formation.Comment: 8 pages, 3 figures; to be published in Physics Letters
Azimuthal asymmetry of direct photons in intermediate energy heavy-ion collisions
Hard photon emitted from energetic heavy ion collisions is of very
interesting since it does not experience the late-stage nuclear interaction,
therefore it is useful to explore the early-stage information of matter phase.
In this work, we have presented a first calculation of azimuthal asymmetry,
characterized by directed transverse flow parameter and elliptic asymmetry
coefficient , for proton-neutron bremsstrahlung hard photons in
intermediate energy heavy-ion collisions. The positive and negative
of direct photons are illustrated and they seem to be anti-correlated to the
corresponding free proton's flow.Comment: 7 pages, 4 figures; accepted by Physics Letters
Feasibility of time-lapse AVO and AVOA analysis to monitor compaction-induced seismic anisotropy
Hydrocarbon reservoir production generally results in observable time-lapse physical property changes, such as velocity increases within a compacting reservoir. However, the physical property changes that lead to velocity changes can be difficult to isolate uniquely. Thus, integrated hydro-mechanical simulation, stress-sensitive rock physics models and time-lapse seismic modelling workflows can be employed to study the influence of velocity changes and induced seismic anisotropy due to reservoir compaction. We study the influence of reservoir compaction and compartmentalization on time-lapse seismic signatures for reflection amplitude variation with offset (AVO) and azimuth (AVOA). Specifically, the time-lapse AVO and AVOA responses are predicted for two models: a laterally homogeneous four-layer dipping model and a laterally heterogeneous graben structure reservoir model. Seismic reflection coefficients for different offsets and azimuths are calculated for compressional (PâP) and converted shear (PâS) waves using an anisotropic ray tracer as well as using approximate equations for AVO and AVOA. The simulations help assess the feasibility of using time-lapse AVO and AVOA signatures to monitor reservoir compartmentalization as well as evaluate induced stress anisotropy due to changes in the effective stress field. The results of this study indicate that time-lapse AVO and AVOA analysis can be applied as a potential means for qualitatively and semi-quantitatively linking azimuthal anisotropy changes caused by reservoir production to pressure/stress changes
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
Modified structure of protons and neutrons in correlated pairs
The atomic nucleus is made of protons and neutrons (nucleons), which are themselves composed of quarks and gluons. Understanding how the quarkâgluon structure of a nucleon bound in an atomic nucleus is modified by the surrounding nucleons is an outstanding challenge. Although evidence for such modificationâknown as the EMC effectâwas first observed over 35 years ago, there is still no generally accepted explanation for its cause1,2,3. Recent observations suggest that the EMC effect is related to close-proximity short-range correlated (SRC) nucleon pairs in nuclei4,5. Here we report simultaneous, high-precision measurements of the EMC effect and SRC abundances. We show that EMC data can be explained by a universal modification of the structure of nucleons in neutronâproton SRC pairs and present a data-driven extraction of the corresponding universal modification function. This implies that in heavier nuclei with many more neutrons than protons, each proton is more likely than each neutron to belong to an SRC pair and hence to have distorted quark structure. This universal modification function will be useful for determining the structure of the free neutron and thereby testing quantum chromodynamics symmetry-breaking mechanisms and may help to discriminate between nuclear physics effects and beyond-the-standard-model effects in neutrino experiments
Measurement of nuclear transparency ratios for protons and neutrons
This paper presents, for the first time, measurements of neutron transparency ratios for nuclei relative to C measured using the (e,eâČn) reaction, spanning measured neutron momenta of 1.4 to 2.4 GeV/c. The transparency ratios were extracted in two kinematical regions, corresponding to knockout of mean-field nucleons and to the breakup of Short-Range Correlated nucleon pairs. The extracted neutron transparency ratios are consistent with each other for the two measured kinematical regions and agree with the proton transparencies extracted from new and previous (e,eâČp) measurements, including those from neutron-rich nuclei such as lead. The data also agree with and confirm the Glauber approximation that is commonly used to interpret experimental data. The nuclear-mass-dependence of the extracted transparencies scales as Aα with α=â0.289±0.007, which is consistent with nuclear-surface dominance of the reactions
Evidence for the Onset of Color Transparency in Electroproduction off Nuclei
We have measured the nuclear transparency of the incoherent diffractive
process in C and Fe targets relative to H
using a 5 GeV electron beam. The nuclear transparency, the ratio of the
produced 's on a nucleus relative to deuterium, which is sensitive to
interaction, was studied as function of the coherence length (),
a lifetime of the hadronic fluctuation of the virtual photon, and the
four-momentum transfer squared (). While the transparency for both
C and Fe showed no dependence, a significant
dependence was measured, which is consistent with calculations that included
the color transparency effects.Comment: 6 pages and 4 figure
Measurement of the - and -Dependence of the Asymmetry on the Nucleon
We report results for the virtual photon asymmetry on the nucleon from
new Jefferson Lab measurements. The experiment, which used the CEBAF Large
Acceptance Spectrometer and longitudinally polarized proton (NH) and
deuteron (ND) targets, collected data with a longitudinally
polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present
paper, we concentrate on our results for and the related ratio
in the resonance and the deep inelastic regions for our lowest
and highest beam energies, covering a range in momentum transfer from
0.05 to 5.0 GeV and in final-state invariant mass up to about 3 GeV.
Our data show detailed structure in the resonance region, which leads to a
strong --dependence of for below 2 GeV. At higher , a
smooth approach to the scaling limit, established by earlier experiments, can
be seen, but is not strictly --independent. We add
significantly to the world data set at high , up to . Our data
exceed the SU(6)-symmetric quark model expectation for both the proton and the
deuteron while being consistent with a negative -quark polarization up to
our highest . This data setshould improve next-to-leading order (NLO) pQCD
fits of the parton polarization distributions.Comment: 7 pages LaTeX, 5 figure
- âŠ