637 research outputs found

    Compatibility Issues With Irregular Current Injection Islanding Detection Methods in Multi-DG Units Equipped With Grid-Connected Transformers

    Get PDF
    Compatibility issues with irregular current injection islanding detection methods are actually the problem that some irregular currents at the same frequency injected into the same line may cancel each other out and then the islanding detection may be impaired, which have been discussed under direct couple conditions (i.e., conditions without grid-connected transformers) in the literature. This article analyzes the issues under the opposite conditions where distributed generation (DG) units are equipped with grid-connected transformers, and is aimed at finding a solution. The analysis derives the setting formulas of key parameters for both three-phase and single-phase DG units, and shows that considering fault tolerance and practicability, only specific frequencies can be used for irregular currents. The usable frequencies are different under different cases. These conclusions are different from those based on direct couple conditions. By summarizing the conclusions based on conditions with grid-connected transformers achieved in this article and those based on direct couple conditions in the literature, a complete solution to compatibility issues is obtained. The conclusions in this article have been verified by the experiments and simulations at the end of this article

    Effects of Allelic Variation in Glutenin Subunits and Gliadins on Baking-Quality in Near-isogenic Lines of Common Wheat cv. Longmai 19

    Get PDF
    Two lines, L-19-613 and L-19-626, were produced from the common wheat cultivar Longmai 19 (L-19) by six consecutive backcrosses using biochemical marker-assisted selection. L-19 (Glu-D1a, Glu-A3c/Gli-A1?; Gli-A1? is a gene coding for unnamed gliadin) and L-19-613 (Glu-D1d, Glu-A3c/Gli-A1?) formed a set of near-isogenic lines (NILs) for HMW-GS, while L-19-613 and L-19-626 (Glu-D1d, Glu-A3e/Gli-A1m) constituted another set of NILs for the LMW-GS/gliadins. The three L-19 NILs were grown in the wheat breeding nursery in 2007 and 2008. The field experiments were designed using the three-column contrast arrangement method with four replicates. The three lines were ranked as follows for measurements of gluten strength, which was determined by the gluten index, Zeleny sedimentation, the stability and breakdown time of the farinogram, the maximum resistance and area of the extensogram, and the P andWvalues of the alveogram: L-19-613 > L-19-626 > L-19. The parameters listed above were significantly different between lines at the 0.05 or 0.01 level. The Glu-D1 and Glu-A3/Gli-A1 loci had additive effects on the gluten index, Zeleny sedimentation, stability, breakdown time, maximum resistance, area, P and W values. Although genetic variation at the Glu-A3/Gli-A1 locus had a great influence on wheat quality, the genetic difference between Glu-D1d and Glu-D1a at the Glu-D1 locus was much larger than that of Glu-A3c/Gli-A1? and Glu-A3e/Gli-A1m at the Glu-A3/Gli-A1 locus. Glu-D1d had negative effects on the extensibility and the L value compared with Glu-D1a. In contrast, Glu-A3c/Gli-A1? had a positive effect on these traits compared with Glu-A3e/Gli-A1m

    Self-Assembled Local Artificial Substrates of GaAs on Si Substrate

    Get PDF
    We propose a self-assembling procedure for the fabrication of GaAs islands by Droplet Epitaxy on silicon substrate. Controlling substrate temperature and amount of supplied gallium is possible to tune the base size of the islands from 70 up to 250 nm and the density from 107 to 109 cm−2. The islands show a standard deviation of base size distribution below 10% and their shape evolves changing the aspect ratio from 0.3 to 0.5 as size increases. Due to their characteristics, these islands are suitable to be used as local artificial substrates for the integration of III–V quantum nanostructures directly on silicon substrate

    The Vacuum System of HIRFL

    Get PDF
    AbstractThe vacuum system of Heavy Ion Research Facility in Lanzhou (HIRFL) is a large and complex system. HIRFL consists of two ECR ion sources, a sector focus cyclotron (SFC), a separate sector cyclotron (SSC) and a multi-purpose cooling storage ring system which has a main ring (CSRm) and an experiment ring (CSRe). Several beam lines connect these accelerators together and transfer various heavy ion beams to more than 10 experiment terminals. According to the requirements of the ion acceleration and ion lifetime, the working pressure in each accelerator is different. SFC is nearly 50 years old. After upgrade, the working pressure in SFC is improved from 10-6mbar to 10-8mbar. The pressure in SSC which was built in the 1980s reaches the same level. The cooling storage ring system with a length of 500m came into operation in 2007. The average pressures in CSRm and CSRe are 5×10-12mbar and 8×10-12mbar respectively. Different designs were adopt for vacuum system of a dozen beam lines to meet specific requirement of each experiment terminal. Along with the extensive development of the heavy ion researches and applications, new accelerators of HIRFL are under construction. The vacuum system of the new machines will be designed and constructed followed the overall schedule

    Directed fast electron beams in ultraintense picosecond laser irradiated solid targets

    Get PDF
    We report on fast electron transport and emission patterns from solid targets irradiated by s-polarized, relativistically intense, picosecond laser pulses. A beam of multi-MeV electrons is found to be transported along the target surface in the laser polarization direction. The spatial-intensity and energy distributions of this beam are compared with the beam produced along the laser propagation axis. It is shown that even for peak laser intensities an order of magnitude higher than the relativistic threshold; laser polarization still plays an important role in electron energy transport. Results from 3D particle-in-cell simulations confirm the findings. The characterization of directional beam emission is important for applications requiring efficient energy transfer, including secondary photon and ion source development

    Weak lensing, dark matter and dark energy

    Full text link
    Weak gravitational lensing is rapidly becoming one of the principal probes of dark matter and dark energy in the universe. In this brief review we outline how weak lensing helps determine the structure of dark matter halos, measure the expansion rate of the universe, and distinguish between modified gravity and dark energy explanations for the acceleration of the universe. We also discuss requirements on the control of systematic errors so that the systematics do not appreciably degrade the power of weak lensing as a cosmological probe.Comment: Invited review article for the GRG special issue on gravitational lensing (P. Jetzer, Y. Mellier and V. Perlick Eds.). V3: subsection on three-point function and some references added. Matches the published versio

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation
    corecore