149 research outputs found

    Structural Stability for Fibrewise Anosov Diffeomorphisms on Principal Torus Bundles

    Full text link
    We show a fibre-preserving self-diffeomorphism which has hyperbolic splittings along the fibres on a compact principal torus bundle is topologically conjugate to a map that is linear in the fibres

    MicroRNAs show diverse and dynamic expression patterns in multiple tissues of Bombyx mori

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) repress target genes at the post-transcriptional level, and function in the development and cell-lineage pathways of host species. Tissue-specific expression of miRNAs is highly relevant to their physiological roles in the corresponding tissues. However, to date, few miRNAs have been spatially identified in the silkworm.</p> <p>Results</p> <p>We establish for the first time the spatial expression patterns of nearly 100 miRNAs in multiple normal tissues (organs) of <it>Bombyx mori </it>females and males using microarray and Northern-blotting analyses. In all, only 10 miRNAs were universally distributed (including bmo-let-7 and bmo-bantam), while the majority were expressed exclusively or preferentially in specific tissue types (e.g., bmo-miR-275 and bmo-miR-1). Additionally, we examined the developmental patterns of miRNA expression during metamorphosis of the body wall, silk glands, midgut and fat body. In total, 63 miRNAs displayed significant alterations in abundance in at least 1 tissue during the developmental transition from larvae to pupae (e.g., bmo-miR-263b and bmo-miR-124). Expression patterns of five miRNAs were significantly increased during metamorphosis in all four tissues (e.g., bmo-miR-275 and bmo-miR-305), and two miRNA pairs, bmo-miR-10b-3p/5p and bmo-miR-281-3p/5p, showed coordinate expression.</p> <p>Conclusions</p> <p>In this study, we conducted preliminary spatial measurements of several miRNAs in the silkworm. Periods of rapid morphological change were associated with alterations in miRNA expression patterns in the body wall, silk glands, midgut and fat body during metamorphosis. Accordingly, we propose that corresponding ubiquitous or tissue-specific expression of miRNAs supports their critical roles in tissue specification. These results should facilitate future functional analyses.</p

    FERM domain-containing unconventional myosin VIIA interacts with integrin β5 subunit and regulates αvβ5-mediated cell adhesion and migration

    Get PDF
    AbstractUnconventional myosin VIIA (Myo7a) has been known to associate with hereditary deafness. Here we present a novel function of Myo7a by identifying that Myo7a directly interacts with integrin β5 subunit and regulates cell adhesion and motility in an integrin-dependent manner. We found that Myo7a bound to the cytoplasmic tail of integrin β5. Further, we pinpointed an integrin-binding domain at F3 of the first FERM domain and F1 of the second FERM domain. Functionally, Myo7a-induced cell adhesion and migration were mediated by integrin αvβ5. These findings indicated that Myo7a interacts with integrin β5 and selectively promotes integrin αvβ5-mediated cell migration

    SacB-SacR Gene Cassette As the Negative Selection Marker to Suppress Agrobacterium Overgrowth in Agrobacterium-Mediated Plant Transformation

    Get PDF
    Agrobacterium overgrowth is a common problem in Agrobacterium-mediated plant transfor-mation. To suppress the Agrobacterium overgrowth, various antibiotics have been used during plant tissue culture steps. The antibiotics are expensive and may adversely affect plant cell differentiation and reduce plant transformation efficiency. The SacB-SacR proteins are toxic to most Agrobacterium tumefaciens strains when they are grown on culture medium sup¬plemented with sucrose. Therefore, SacB-SacR genes can be used as negative selection markers to suppress the overgrowth of Agrobacterium tumefaciens in the plant tissue culture process. We generated a mutant Agrobacterium tumefaciens strain GV2260 (recA-SacB/R) that has the SacB-SacR cassette inserted into the bacterial genome at the recA gene locus. The mutant Agrobacterium strain is sensitive to sucrose but maintains its ability to transform plant cells in both transient and stable transformation assays. We demonstrated that the mutant strain GV2260 (recA-SacB/R) can be inhibited by sucrose that reduces the overgrowth of Agrobacterium and therefore improves the plant transformation efficiency. We employed GV2260 (recA-SacB/R) to generate stable transgenic N. benthamiana plants expressing a CRISPR-Cas9 for knocking out a WRKY transcrip¬tion factor

    Genome of Pythium myriotylum Uncovers an Extensive Arsenal of Virulence-Related Genes among the Broad-Host-Range Necrotrophic Pythium Plant Pathogens

    Get PDF
    The Pythium (Peronosporales, Oomycota) genus includes devastating plant pathogens that cause widespread diseases and severe crop losses. Here, we have uncovered a far greater arsenal of virulence factor-related genes in the necrotrophic Pythium myriotylum than in other Pythium plant pathogens. The genome of a plant-virulent P. myriotylum strain (~70 Mb and 19,878 genes) isolated from a diseased rhizome of ginger (Zingiber officinale) encodes the largest repertoire of putative effectors, proteases, and plant cell wall-degrading enzymes (PCWDEs) among the studied species. P. myriotylum has twice as many predicted secreted proteins than any other Pythium plant pathogen. Arrays of tandem duplications appear to be a key factor of the enrichment of the virulence factor-related genes in P. myriotylum. The transcriptomic analysis performed on two P. myriotylum isolates infecting ginger leaves showed that proteases were a major part of the upregulated genes along with PCWDEs, Nep1-like proteins (NLPs), and elicitin-like proteins. A subset of P. myriotylum NLPs were analyzed and found to have necrosis-inducing ability from agroinfiltration of tobacco (Nicotiana benthamiana) leaves. One of the heterologously produced infection-upregulated putative cutinases found in a tandem array showed esterase activity with preferences for longer-chain-length substrates and neutral to alkaline pH levels. Our results allow the development of science-based targets for the management of P. myriotylum-caused disease, as insights from the genome and transcriptome show that gene expansion of virulence factor-related genes play a bigger role in the plant parasitism of Pythium spp. than previously thought. IMPORTANCE Pythium species are oomycetes, an evolutionarily distinct group of filamentous fungus-like stramenopiles. The Pythium genus includes several pathogens of important crop species, e.g., the spice ginger. Analysis of our genome from the plant pathogen Pythium myriotylum uncovered a far larger arsenal of virulence factor-related genes than found in other Pythium plant pathogens, and these genes contribute to the infection of the plant host. The increase in the number of virulence factor-related genes appears to have occurred through the mechanism of tandem gene duplication events. Genes from particular virulence factor-related categories that were increased in number and switched on during infection of ginger leaves had their activities tested. These genes have toxic activities toward plant cells or activities to hydrolyze polymeric components of the plant. The research suggests targets to better manage diseases caused by P. myriotylum and prompts renewed attention to the genomics of Pythium plant pathogens

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore