211 research outputs found

    HPLC Analysis of Chemical Composition of Selected Jordanian Medicinal Plants and their Bioactive Properties

    Get PDF
    Three medicinal plants grown wild in Jordan, namely Achillea santolina L, Achillea fragrantisimma, Asteriscus graveolens (Forssk.) Less, were extracted with ethyl acetate by continuous shaking at room temperature for three days. The antibacterial activity of the crude extract was evaluated. The extracts were analyzed for their phenolic and flavonoids content by HPLC-PDA. The HPLC analysis of the plant extracts revealed the presence of flavonoids and phenolic compounds in the three plant extracts. Results revealed a strong antibacterial activity of A. graveolens against three bacterial strains (B. subtilis, E. coli, and S.aureus). while A. fragrantissima inhibited the growth of B. subtilis. Bioactivities were attributed mainly to the immense content of phenol-based compounds in plants.University and Al-Quds University for providing facilities, and encouragemen

    Identification and Antibacterial Evaluation of Selected Jordanian Medicinal Plants

    Get PDF
    Dried aerial parts of three medicinal plants grown wild in Jordan, namely Ononis natrix L, Salvia spinosa L. and Salvia verbenace L, were extracted upon soaking with ethyl acetate by continuous shaking at room temperature for three days. The extracts were analyzed for their phenolic and flavonoids content by HPLC-PDA. The HPLC analysis of the plant extracts revealed the presence of flavonoids and phenolic compounds in the three plant extracts. The antibacterial activity of the crude extract was evaluated. The PDA wavelengths range was from 227-347 nm. Bioactivities were attributed mainly to the immense content of phenol-based compounds in plants.Authors wish to acknowledge Mutah University and Al-Quds University for providing facilities, and encouragement

    Green Synthesis of Silver Nanoparticles Using Hypericum perforatum L. Aqueous Extract with the Evaluation of Its Antibacterial Activity against Clinical and Food Pathogens

    Get PDF
    The rapid development of nanotechnology and its applications in medicine has provided the perfect solution against a wide range of different microbes, especially antibiotic-resistant ones. In this study, a one-step approach was used in preparing silver nanoparticles (AgNPs) by mixing silver nitrate with hot Hypericum perforatum (St. John’s wort) aqueous extract under high stirring to prevent agglomeration. The formation of silver nanoparticles was monitored by continuous measurement of the surface plasma resonance spectra (UV-VIS). The effect of St. John’s wort aqueous extract on the formation of silver nanoparticles was evaluated and fully characterized by using different physicochemical techniques. The obtained silver nanoparticles were spherical, monodisperse, face-centered cubic (fcc) crystal structures, and the size ranges between 20 to 40 nm. They were covered with a capping layer of organic compounds considered as a nano dimension protective layer that prevents agglomeration and sedimentation. AgNPs revealed antibacterial activity against both tested Gram-positive and Gram-negative bacterial strains causing the formation of 13–32 mm inhibition zones with MIC 6.25–12.5 µg/mL; Escherichia coli strains were resistant to tested AgNPs. The specific growth rate of S. aureus was significantly reduced due to tested AgNPs at concentrations ≥½ MIC. AgNPs did not affect wound migration in fibroblast cell lines compared to control. Our results highlighted the potential use of AgNPs capped with plant extracts in the pharmaceutical and food industries to control bacterial pathogens’ growth; however, further studies are required to confirm their wound healing capability and their health impact must be critically evaluate

    Sorption of platinum on immobilized microorganisms for its on-line preconcentration and chemiluminescent determination in water samples

    Get PDF
    Fungi of the type Aspergillus sp. were immobilized on a cellulosic resin and used as a biosorbent for the on-line preconcentration and separation of Pt(IV) ions prior to their chemiluminescent determination via flow injection analysis. Biosorption and elution conditions were optimized, and the results compared to biosorbents based on the use of Chlorella vulgaris algae and Saccharomyces cerevisiae yeast in terms of preconcentration and selective retention of Pt(IV). The immobilized fungi presented here have a high potential for use in platinum biosorption. The procedure exhibits the currently lowest limit of detection (0.02 ng mL−1 of Pt) and very high selectivity. The procedure was applied to the determination of Pt(IV) in river water, road run-off, and wastewater samples

    Production of bioactive secondary metabolites by marine Vibrionaceae

    Get PDF
    Abstract: Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS). Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation

    Mass distributions and morphological and chemical characterization of urban aerosols in the continental Balkan area (Belgrade)

    Get PDF
    This work presents characteristics of atmospheric aerosols of urban central Balkans area, using a size-segregated aerosol sampling method, calculation of mass distributions, SEM/EDX characterization, and ICP/MS analysis. Three types of mass distributions were observed: distribution with a pronounced domination of coarse mode, bimodal distribution, and distribution with minimum at 1 μm describing the urban aerosol. SEM/EDX analyses have shown morphological difference and variation in the content of elements in samples. EDX spectra demonstrate that particles generally contain the following elements: Al, Ca, K, Fe, Mg, Ni, K, Si, S. Additionally, the presence of As, Br, Sn, and Zn found in air masses from southeast segment points out the anthropogenic activities most probably from mining activities in southeastern part of Serbia. The ratio Al/Si equivalent to the ratio of desert dust was associated with air masses coming from southeastern and southwestern segments, pointing to influences from North Africa and Middle East desert areas whereas the Al/Si ratio in other samples is significantly lower. In several samples, we found high values of aluminum in the nucleation mode. Samples with low share of crustal elements in the coarse mode are collected when Mediterranean air masses prevailed, while high share in the coarse mode was associated with continental air masses that could be one of the approaches for identification of the aerosol origin. Graphical abstract ᅟ.This work presents characteristics of atmospheric aerosols of urban central Balkans area, using a size-segregated aerosol sampling method, calculation of mass distributions, SEM/EDX characterization, and ICP/MS analysis. Three types of mass distributions were observed: distribution with a pronounced domination of coarse mode, bimodal distribution, and distribution with minimum at 1 mu m describing the urban aerosol. SEM/EDX analyses have shown morphological difference and variation in the content of elements in samples. EDX spectra demonstrate that particles generally contain the following elements: Al, Ca, K, Fe, Mg, Ni, K, Si, S. Additionally, the presence of As, Br, Sn, and Zn found in air masses from southeast segment points out the anthropogenic activities most probably from mining activities in southeastern part of Serbia. The ratio Al/Si equivalent to the ratio of desert dust was associated with air masses coming from southeastern and southwestern segments, pointing to influences from North Africa and Middle East desert areas whereas the Al/Si ratio in other samples is significantly lower. In several samples, we found high values of aluminum in the nucleation mode. Samples with low share of crustal elements in the coarse mode are collected when Mediterranean air masses prevailed, while high share in the coarse mode was associated with continental air masses that could be one of the approaches for identification of the aerosol origin
    corecore