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Abstract This work presents characteristics of atmospheric
aerosols of urban central Balkans area, using a size-
segregated aerosol sampling method, calculation of mass dis-
tributions, SEM/EDX characterization, and ICP/MS analysis.
Three types of mass distributions were observed: distribution
with a pronounced domination of coarse mode, bimodal dis-
tribution, and distribution with minimum at 1 μm describing
the urban aerosol. SEM/EDX analyses have shown morpho-
logical difference and variation in the content of elements in
samples. EDX spectra demonstrate that particles generally
contain the following elements: Al, Ca, K, Fe, Mg, Ni, K,
Si, S. Additionally, the presence of As, Br, Sn, and Zn found
in air masses from southeast segment points out the anthropo-
genic activities most probably frommining activities in south-
eastern part of Serbia. The ratio Al/Si equivalent to the ratio of
desert dust was associated with air masses coming from south-
eastern and southwestern segments, pointing to influences
from North Africa and Middle East desert areas whereas the
Al/Si ratio in other samples is significantly lower. In several
samples, we found high values of aluminum in the nucleation

mode. Samples with low share of crustal elements in the
coarse mode are collected when Mediterranean air masses
prevailed, while high share in the coarse mode was associated
with continental air masses that could be one of the ap-
proaches for identification of the aerosol origin.
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Introduction

The properties of atmospheric aerosols show spatial and tem-
poral variability. Depending on their elemental composition,
the scattering, and absorption of light by airborne particles
may vary. Atmospheric aerosols containing sulfates are
regarded as primary particles responsible for the net cooling
effect by scattering of solar radiation and by acting as cloud
condensation nuclei (CCN) (Mogo et al. 2005). The negative
radiative forcing further leads to the cooling of Earth’s surface.
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On the other hand, soot or black carbon is well known
absorber of solar radiation causing a warming effect
(Mogo et al. 2005).

The diameter of the atmospheric particles can span over
four orders of magnitude and in this wide-size range; for

example, the mass of a 10-μm particle is equivalent to
the mass of one billion 10-nm particles (Seinfeld and
Pandis 1998; Heintzenberg et al. 2011). The distribution
of particle mass with respect to particle size, nM(Dp)
(Eq. (1)), is

nM Dp
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106

� �
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where ρp is the particle density (g cm
−3), nV(Dp) is the particle

volume distribution with respect to particle size (μm2 cm−3),
Dp is the particle diameter (μm), and the factor 106 converts
the units of density ρp from g cm−3 to μg μm−3 to maintain the
units for nM(Dp) as μg μm

−1 cm−3 (Seinfeld and Pandis 1998).
The aerosol-size distributions of urban areas usually

have two distinct modes, one in submicron regime and
the other in the coarse particle regime. Mass distributions
of urban aerosols are characterized by a minimum between
1 and 3 μm. For the size distribution of marine aerosol, it
is typical that the coarse mode comprises 95 % of the
total mass and 5–10 % of the particle number. The char-
acteristics of rural continental aerosol are domination of
the coarse mode centered at about 7 μm in mass distribu-
tion. The main components of remote continental aerosol
are primary particles and secondary oxidation products
with PM2.5 contribution of about 40–80 %. Aerosol of
middle troposphere is characterized with more particles
in the accumulation mode relative to lower tropospheric
spectra, as results of precipitation scavenging and deposi-
tion of smaller and larger particles (Seinfeld and Pandis
1998). The shape and size distribution of desert aerosol is
similar to that of remote continental aerosol but depends
strongly on the wind velocity and only particles smaller
than 10 μm are transported over long distances (Seinfeld
and Pandis 1998).

Adverse health effects from air pollution are influenced
by particle size, chemical composition, and solubility
(Carter et al. 1997; Samet et al. 2000). Industrial facilities,
fossil fuel burning, waste incineration plants, and traffic
are considered to be main sources of anthropogenic heavy
metal emission (Zereini et al. 2005). Significant portion of
elements in atmospheric aerosols originates from natural
sources like desert dust, volcanic dust, re-suspension, bio-
mass burning, etc. (Rodríguez et al. 2003; Bukowiecki
et al. 2011; Handler et al. 2008; Paris et al. 2010).

Elements such as As, Cd, Co, Ni, Pb, Sb, V, Zn, and the
platinum group of elements (Pt, Pd, and Rh) can be character-
ized as road-specific heavy metals derived from combustion
and losses from fuels, engine, and transmission oils, abrasion

from tires, brake linings, exhaust catalysts, road pavement,
and corrosion of galvanized protection barriers (Zereini et al.
2005). Even low concentrations of some heavy metals in air-
borne particles such as Pb, As, and Se may cause negative
health effects (Utsunomiya et al. 2004).

Lately, a number of authors describe the morphology of
collected aerosol samples by electron microscopy studies
(Blanco et al. 2003; Wittmaack 2005; Nguyen et al. 2006;
Sinha et al. 2008; Bern et al. 2009; Martin et al. 2010; Conny
2011; Sánchez de la Campa et al. 2013; Pietrodangelo et al.
2014). Morphology is an important microphysical trait that
relates to particle aerodynamic behavior, possible health effects
(Gelencsér et al. 2011), direct trace metal identification
(Utsunomiya et al. 2004), formation mechanism, and source
identification (Moffet et al. 2008; Ault et al. 2012).

In this work, we categorize mass distributions of urban
aerosols provide information on morphology using high-
resolution images obtained by scanning electron microscopy
and information about the elemental composition obtained by
energy dispersive X-ray analysis and metal analysis of
characteristic samples using ICP-MS. The main goal of
this study is to investigate physical and chemical char-
acteristics of continental urban aerosols and assess the
main origin of particulate matter with emphasis on its
morphology and chemical characterization. Special attention
was paid to distribution of metal concentrations in samples
from various origins.

Materials and methods

Sampling

Size-segregated aerosol samples were collected in urban
area of Belgrade (44° 49′ 10.08″ N−20° 27′ 32.47″ E)
using high-volume cascade impactor, model TE-236
(Tisch Environmental Inc., USA) in the following six size
fractions: PM<0.49, PM0.49–0.95, PM0.95–1.5, PM1.5–3.0,
PM3.0–7.2, PM>7.2 (Đorđević et al. 2012, 2014; Mihajlidi-
Zelić et al. 2015).
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Gravimetric measurements

Gravimetric measurements of the collected samples have been
performed in a clean room (class 100) in a glove box system
with nitrogen atmosphere (temperature 20±5 °C and humidity
45±5 %) using KERN ABT 120-5DM balance (accuracy
class I and precision of 0.01 mg). Before their use, filters from
mixed cellulose ester were washed in 1 % HNO3 for 24 h,
dried in a clean room environment, and stored singular-
ly. Samples and blanks were stored in freezer (−20 °C)
till their processing.

Chemical analysis

For elemental analysis of sampled aerosols, acid microwave
digestion with HNO3 (6 cm

3), H2O2 (2 cm
3), and HF (3 cm3)

using Milestone® HPR-1000/10S high-pressure temperature-
controlled microwave oven and subsequent ICP-QMS (induc-
tively coupled plasma-quadrupole mass spectrometer, Agilent
7500I)) analyses were applied. The accuracy and precision of
the method was controlled using the standard reference mate-
rial (Urban Particulate Matter NIST®1684a) (Stortini et al.
2009; Đorđević et al. 2014).

Electron microscopic studies

Electron microscopic imaging of aerosol samples was accom-
plished using SEM (Nova NanoSEM 230, FEI, Hillsboro,
OR) (Schlagenhauf et al. 2012; Buha et al. 2014) in order to
get information on the primary particle size, particle morphol-
ogy, and aggregation status. EDX (energy dispersive X-ray)
analysis was carried out to obtain information on the spatially
resolved chemical composition, and the results were further
compared to those obtained by ICP-QMS. Analysis was per-
formed for all samples, but only results for four representative
samples are presented here.

Results and discussion

Aerosol mass distributions

Average mass concentration of investigated aerosol showed
dominance in the fine mode (with amount of about 65 %) and
the mean concentration of coarse mode is around 35 %. The
dominant components of fine mode are sulfates and ammoni-
um ion (Đorđević et al. 2012) while Al, Ca, and Fe are dom-
inating in the coarse mode (Đorđević et al. 2014).

The results of mass concentration of collected samples
comprised in six size ranges are presented in mass distribu-
tions. In our previous work, dominant air masses for each
sample are identified (Mihajlidi-Zelić et al. 2015). Three char-
acteristic types of mass distributions are observed: (1) with

distinctly dominant coarse mode (Fig. 1a) in the interval 3.0
<Dp≤7.2 μm, (2) bimodal distribution (Fig. 1b) with first
peak in the range 0.95<Dp≤1.5 μm and other in the range
3.0<Dp≤7.2 μm, and (3) distribution (Fig. 1c) with the max-
imum in the coarse mode 3.0<Dp≤7.2 μm and a pronounced
minimum at 0.95<Dp≤1.5 μm.

Fig. 1 Three types of characteristic mass distributions of investigated
urban aerosol: a with dominant of coarse mode, b bimodal distributions,
and c distributions with the minimum around 1 μm
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The first type of mass distribution (Fig. 1a) presents the
samples collected during air masses mainly arriving from con-
tinental northern, northeastern, and southeastern segments (N,
NE, SE), respectively, (Mihajlidi-Zelić et al. 2015) with the
exception of the samples collected on 9–11 July 2008 and 26–
28 August 2008 (northwestern (NW) air masses) and on 12–
14 November 2008 (southwestern (SW) air masses).
Although the distributions of these samples have mild features
of the bimodal distribution, the first mode is not as clearly
expressed as in Fig. 1b. The type of mass distribution of these
samples may be associated with continental aerosols with a
slight marine influence.

The second type of mass distribution (Fig. 1b) is character-
istic for the samples collected during the prevalence of air
masses from NW and SW segments with exception of the
sample collected 1–3 September 2008 when N air masses
prevailed. NW and SW air masses are arriving from the
Atlantic and the Mediterranean, respectively, and this form of
bimodal mass distribution can be linked to the marine aerosol
combined with the continental aerosol. In our previous studies
using the components of marine aerosols (Na+, Cl−, Mg2+) and
prevailing air masses, we could detect significant influence of
marine aerosols in the urban area of the central Balkans
(Đorđević et al. 2012, 2014; Mihajlidi-Zelić et al. 2015).

For the third type of mass distribution (Fig. 1c), there was
no observed dominance of any air mass, although the trends
are more or less similar with a minimum atDp≈1 μm for each
sample. Taking into account mass and volume distributions
that are directly related via density of aerosols’ material (ρ)
given in Eq. (1) (Seinfeld and Pandis 1998) measured mass
distributions can be used to identify the origin of aerosols by
comparing with volume distributions. It might be expected
that the urban mass distribution is in relation to urban volume
distribution that has a minimum at about Dp≈1 μm.

Electron microscopy and energy dispersive X-ray
measurements

Electron microscopy analyses (SEM) of the aerosol samples
were performed in order to get information of the size, mor-
phology, and aggregation status of particles. Energy disper-
sive X-ray (EDX) analysis was performed to obtain informa-
tion on the spatially resolved chemical composition. Several
samples representing different air masses were selected for
SEM/EDX analyses and four representative samples are pre-
sented here (Fig. 2). For these samples, we have performed
SEM imaging and EDX analyses. Agglomerates ranging from
hundreds of nanometers to several micrometers in size were

observed in the aerosol samples (Fig. 2a1, b1, c1, and d1). The
SEM images showed that smaller particles were agglomerates
of relatively small particles; the large particles had quite com-
pact structures with large cores and some small primary par-
ticles attached to the surface. Figure 2a1 shows the morphol-
ogy of the sample collected in the period 7–9 September 2008.
During collection of this sample prevailing air masses
were from SW segment–Mediterranean region (Mihajlidi-
Zelić et al. 2015). Different shapes and sizes of particles can
be observed and EDX spectrum showed on Fig. 2a2.
Mass distribution of this sample corresponds to marine
aerosol (Fig. 1b).

Figure 2b1 presents an image of aerosols collected in the
period 13–15 October 2008, when NWair masses were prevail-
ing (Mihajlidi-Zelić et al. 2015). The sample is porous with an
abundance of small particles adsorbed on large ones. EDX
spectrum of the collected aerosol is shown in Fig. 2b2.
Element/Si ratio and other ratios of elements in this
sample are given in Table 1. Their mass distribution is
characterized by pronounced peak in the range of coarse par-
ticles 3.0<Dp≤7.2 μm.

Figure 2c1 shows the image of aerosols collected in the
period 6–8 November 2008, during prevailing eastern conti-
nental air masses (SE). EDX spectrum of the collected aerosol
is shown in Fig. 2c2. Element/Si ratios are given in the Table 1.
In this sample, the presence of As, Br, Sn, and Zn is observed,
which may be related to anthropogenic emission sources.
Mass distribution of this sample (Fig. 1c) indicates anthropo-
genic urban activities from remote areas in SE segment, most
likely coming from the outdated technologies in Serbia as well
as in Southeastern Europe.

A source of As could be attributed to crude ore with a sig-
nificant share of As and other microelements frommining com-
plex Bor. In the SE directions are also two coal-fired power
plants (Drmno and Kostolac) about 60 km far from Belgrade.
Lignite with high As content is used in these power plants.

Figure 2d1shows the SEM image presenting the morphol-
ogy of aerosols collected in the time interval 18–20 November
2008, when prevailing northern (N) air masses were detected.
EDX spectrum of collected aerosol is shown in Fig. 2d2.
Element/Si ratio and other ratios are given in the Table 1.
Mass distribution of the sample also corresponds to the conti-
nental aerosols (Fig. 1a).

In our previous work, it was shown that the dominant air
masses were from the west segment–SW (34.4 %) and NW
(28.1 %), whereas the presence of air masses from the
southeastern segment (SE) was less than 10 %
(Mihajlidi-Zelić et al. 2015).

EDX spectra (Fig. 2a2, b2, c2, and d2) of the collected aero-
sols show that particles mainly contain the following ele-
ments: Al, Ca, K, Fe, Mg, Ni, K, Si, and S but in SE air masses
additionally anthropogenic elements like As, Br, Sn, and Zn
have been found (Fig. 2c2).

�Fig. 2 SEM images (a1, b1, c1 and d1), and EDX spectrums (a2, b2, c2,
and d2) of samples collected in the following periods: 7–9 September
2008 (SW), 13–15 October 2008 (NW), 6–8 November 2008 (SE), and
18–20 November 2008 (N), respectively

Environ Sci Pollut Res (2016) 23:851–859 855



Comparison of the calculated ratios of elements and Si with
ratios obtained in 2002 in Southern Italy in Lecce lead to the
conclusion that the Al/Si ratio is approximately equal to the
ratio of the desert dust that is spread from parts of North Africa
(Blanco et al. 2003). Ratios Ca/Si and Fe/Si are twice higher;
K/Si is at the level of that found in Southern Italy, whereas the
ratios Mg/Si and S/Si are about 20 % lower. Higher ratios of
(crustal element)/Si point to stronger influence of re-
suspension in distant continental areas in relation to Lecce
where the more significant impact of marine aerosol exists.

Al/Si ratios in samples collected during air masses from
SW (Al/Si=0.50) and SE (Al/Si=0.41) directions (Tables 1
and 3) correspond to the values found in transported desert

dust demonstrating the impact of Saharan dust in the conti-
nental parts of Balkan Peninsula but also the impact of dust
coming fromMiddle East deserts. Likewise, from SWand SE
directions ratios Ca/Si and Ca/Al are significantly higher from
those found in southern Italy (Blanco et al. 2003). The in-
crease of Ca and therefore the high ratios of Ca/Si and Ca/Al
may be due not only to the existence of limestone rocks in the
western Balkan but also in a high proportion of calcite in dust
and aerosols form North Africa. Dust and aerosols emanating
from North Africa (Morocco) are rich in calcite (Moreno et al.
2006). Furthermore, calcite, dolomite, and feldspar are the
dominant constituents of airborne dust from areas of Sahara,
while quartz dominates in all aerosols originating from North
Africa without indicating specific area of origin (Caquineau
et al. 1998). Lower ratio Fe/Ca than that found in Southern
Italy also is most likely due to the higher content of Ca in
atmospheric aerosol in the continental part of Balkan due to
higher local crustal origin of Ca. The ratio of K/Ca from SW
direction is considerably lower.

Elemental analysis

Average values of elements’ distribution through Dp intervals
are shown in the Table 2. The dominant share of the nucleation
mode is found for As, K, Ni, V, and U pointing to anthropo-
genic emission sources, while for Al, Li, Mg, Ca, Co, Cr, Fe,
and Mn coarse mode dominates, pointing the crustal origin as
dominant. These results are in agreement with our previous
work where we pointed to the same origin of these elements
(Đorđević et al. 2014).

According to the share of elements in the individual sam-
ples through fractions (Fig. 3), two extremely characteristic
samples were singled out: (1) a sample collected in the period
7–9 September 2008 with prevailing Mediterranean air
masses (SW), for which shares of all the above elements have

Table 2 Average percentage (%)
of element in PM fractions PM<0.49 PM0.49–0.95 PM0.95–1.5 PM1.5–3.0 PM3.0–7.2 PM7.2–10

Li 14.48±8.13 4.11±4.36 14.85±4.63 19.88±5.66 34.26±13.14 12.42±3.94

Mg 16.81±7.15 10.38±5.74 13.20±3.90 16.23±5.29 27.96±11.97 12.49±4.53

Al 15.96±6.74 12.48±6.34 14.21±4.06 16.63±4.28 29.07±10.89 11.66±4.16

K 58.70±17.00 13.60±4.62 6.55±5.79 6.01±5.08 11.43±8.75 3.72±3.09

Ca 12.60±9.70 7.93±3.81 13.19±3.33 18.31±3.85 32.38±9.73 15.59±3.62

V 57.30±13.69 9.05±3.13 9.07±6.71 8.27±3.28 11.54±4.93 4.76±2.23

Cr 21.93±10.30 12.04±5.46 11.53±4.42 18.32±4.64 27.33±8.24 8.84±3.24

Mn 22.78±4.77 12.59±2.90 13.66±3.88 15.39±3.12 23.60±7.52 11.98±5.31

Fe 13.65±4.12 9.95±4.12 15.93±4.00 19.92±3.67 29.61±9.04 10.94±2.66

Co 6.02±5.83 2.20±3.77 20.60±4.87 23.09±3.37 29.59±6.54 18.50±4.48

Ni 49.59±11.93 10.75±3.10 9.98±6.18 9.87±3.12 14.87±5.26 4.94±2.36

Ga 20.08±7.68 12.42±4.75 13.82±4.38 17.43±6.09 26.28±7.94 9.98±3.41

As 58.45±14.76 11.71±4.73 9.55±6.39 7.44±4.69 9.32±5.98 3.53±2.87

U 36.32±2.86 37.40±3.10 6.34±1.67 7.12±2.37 7.85±2.87 4.97±1.38

Table 1 Element/Si and other ratios of elements in samples collected
during various air masses

7–9 September 2008 (SW)

Al/Si 0.50 Ca/Si 0.24 K/Si 0.13 Fe/Si 0.26

Mg/Si 0.12 Ni/Si 0.15 S/Si 0.06 P/Si 1.08

Ca/Al 0.40 Si/Al 2.10 Fe/Ca 0.40 K/Ca 0.50

Mg/Na 2.00

13–15 October 2008 (NW)

Al/Si 0.27 Ca/Si 0.48 K/Si 0.26 Fe/Si 1.36

Mo/Si 2.47 Ca/Al 1.81 Si/Al 3.77 Fe/Ca 2.81

K/Ca 0.54 Mo/Fe 1.82

6–8 November 2008 (SE)

Al/Si 0.41 Ca/Si 12.16 K/Si 0.08 Fe/Si 0.55

As/Fe 0.52 As/Si 0.05 Br/Si 1.09 Si/Al 2.37

Zn/Si 0.02 Zn/Fe 0.27 Ca/Al 1.04 Sn/Zn 2.95

Fe/Ca 0.01 K/Ca 0.93 Mg/Si 0.07

18–20 November 2008 (N)

Al/Si 0.28 Ca/Si 0.95 K/Si 0.23 Fe/Si 0.54

As/Fe 0.13 As/Si 0.02 Ca/Al 0.83 Fe/V 5.44

K/Ca 1.78 Mg/Si 0.08
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a minimum in the range of coarse mode and (2) a sample
collected in the period 19–21 September 2008 with prevailing
NE air masses, characterized by maximum shares of all the
above elements in the range of coarse mode. This result could

be included as additional approach for identifying the origin of
marine and continental aerosols.

In Mediterranean air masses (SW) (Fig. 3a), the share of
crustal elements is minimal in the coarse mode of aerosols
collected in the measured campaign of central Balkans indi-
cating a strong influence of marine aerosols in this region. The
influence of re-suspension is dominant for continental air
masses (NE) (Fig. 3b).

The share of crustal elements in the nuclei mode for some
samples is extremely high. It should be noted that in the sam-
ple collected from 7–9 September 2008, in the nucleation
mode, the absolute highest contents of Al, Ga, Li, Mg, Co,
and Cr were recorded in the whole measured campaign. The
maximum value of Al measured in this sample (336.1 ng m−3)
was about eight times higher the average content of Al in the
PM<0.49 fraction, which is 42.7 ng m

−3 (Đorđević et al. 2014)
In the marine aerosols, such extremely high value of Al con-
tent is not expected, especially not in the nucleationmode. It is
well known that crustal Al is in the coarse mode. The coinci-
dence is that these extremely high values of Al in nucleation
modemeasured during theMediterranean air masses (SW) are
accompanied by low amount of Al in coarse mode (Table 3).
The mean value of Al for the whole measuring campaign in
the fraction of coarse mode PM3.0–7.2 was 65.4±45.6 ng m

−3,
but in this sample, the measured value in coarse mode is
17.16 ng m−3 (Table 3). Aluminum as crustal component can-
not be found in the nucleation mode. Our result of Al in nu-
cleation mode indicates an anthropogenic origin, most proba-
bly connected with global geo-engineering regarding the on-
going global climate modification programs by spraying tens

Table 3 Size-segregated concentrations (ngm−3) of elements in characteristic samples collected duringMediterranean air masses 7–9 September 2008
(SW) and continental air masses 19–21 September 2008 (NE)

7–9 September 2008 (SW) 19–21 September 2008 (NE)

PM<0.49 PM0.49–0.95 PM0.95–1.5 PM1.5–3.0 PM3.0–7.2 PM7.2–10 PM<0.49 PM0.49–0.95 PM0.95–1.5 PM1.5–3.0 PM3.0–7.2 PM7.2–10

Li 0.22 0.10 0.14 0.16 0.02 0.05 0.02 0.00 0.01 0.01 0.14 0.01

Mg 75.42 35.00 37.34 46.17 5.44 13.66 6.81 2.54 4.23 4.46 37.23 3.18

Al 336.12 162.34 168.80 203.05 17.16 52.25 23.84 9.60 10.19 10.41 152.58 9.62

K 159.82 47.80 42.37 52.54 4.03 14.35 40.90 16.95 9.70 0.78 47.55 1.34

Ca 181.48 74.06 117.00 160.75 58.48 86.80 36.20 13.69 22.89 29.93 168.46 29.59

V 1.48 0.29 0.36 0.40 0.13 0.16 0.66 0.09 0.08 0.08 0.36 0.06

Cr 0.61 0.25 0.29 0.43 0.14 0.14 0.22 0.08 0.04 0.07 0.41 0.07

Mn 4.21 1.83 2.36 2.85 0.75 1.18 1.03 0.48 0.43 0.40 2.76 0.39

Fe 201.84 100.71 161.90 189.29 50.97 70.71 31.14 14.81 22.19 23.31 173.90 18.59

Co 0.08 0.03 0.07 0.08 0.04 0.05 0.00 0.00 0.03 0.03 0.08 0.03

Ni 0.82 0.18 0.20 0.23 0.09 0.09 0.32 0.07 0.04 0.05 0.23 0.03

Ga 0.18 0.09 0.11 0.12 0.04 0.05 0.04 0.06 0.02 0.01 0.11 0.01

As 0.77 0.21 0.25 0.29 0.04 0.10 0.72 0.15 0.08 0.04 0.28 0.01

U 0.03 0.03 0.01 0.01 0.00 0.01 0.03 0.03 0.00 0.00 0.01 0.00

Fig. 3 Share of elements through PM fractions in characteristics samples:
a sample collected during Mediterranean air masses 7–9 September 2008
(SW) and b sample collected during continental air masses 19–21
September 2008 (NE)
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of millions of tons of nanoparticulates containing metals
among is aluminum.

Conclusion

Analyzing the results of the calculated mass distribution, it is
observed that there are three characteristic types of mass dis-
tributions: (1) with pronounced domination of coarse mode
that can be associated with continental aerosols followed by
slight influence of marine aerosols, (2) bimodal distribution
which may be related to marine aerosol combined with conti-
nental, and (3) distribution most similar to those described in
the urban aerosol. Generally, the following elements are dom-
inating: Al, Ca, K, Fe, Mg, Ni, K, Si, and S, but samples
collected during the air masses coming from southeast seg-
ment contain As, Br, Sn, and Zn whose origin is from com-
bustion and other anthropogenic activities. Ratios Al/Si in the
aerosol collected when southwestern (SW) and southeastern
(SE) air masses prevailed correspond to desert dust arriving
fromNorth Africa andMiddle East. Al/Si ratios in the aerosols
arriving with others air masses are significantly lower.

According to the share of elements through fractions, two
characteristic samples were singled out: (1) a sample with
minimum share of the crustal elements in the coarse mode
collected when Mediterranean air masses prevailed and (2) a
sample with maximum share of the crustal elements in the
coarse mode affected by continental air masses. This result
could be included as additional approach for identification of
the origin of marine and continental aerosol. High values of
aluminum in the nucleation mode could be connected to an-
thropogenic originmost probably with global geo-engineering
regarding the ongoing global climate modification programs.
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