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Abstract: Bacteria belonging to the Vibrionaceae family are widespread in the marine 

environment. Today, 128 species of vibrios are known. Several of them are infamous for 

their pathogenicity or symbiotic relationships. Despite their ability to interact with 

eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive 

secondary metabolites and studies have been limited to only a few species. Most of the 

compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with 

examples of N-containing compounds produced independent of nonribosomal peptide 

synthetases (NRPS). Though covering a limited chemical space, vibrios produce 

compounds with attractive biological activities, including antibacterial, anticancer, and 

antivirulence activities. This review highlights some of the most interesting structures from 

this group of bacteria. Many compounds found in vibrios have also been isolated from 

other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a 

high incidence of horizontal gene transfer, which raises interesting questions concerning 

the ecological function of some of these molecules. This account underlines the pending 

potential for exploring new bacterial sources of bioactive compounds and the challenges 

related to their investigation. 
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1. Introduction 

Marine Vibrionaceae are Gram-negative, rod-shaped γ-proteobacteria that are usually motile and 

possess a chemoheterotrophic metabolism [1]. Members of this family are widespread in the marine 

environment, including estuaries, coastal waters, and sediments [1]. At this writing,  

the family includes seven genera (Figure 1): Allivibrio (6 species), Enterovibrio (4 species),  

Salinivibrio (6 species), Catenococcus (1 species), Grimontia (1 species), Vibrio (89 species), and  

Photobacterium (21 species) [1,2]. 

Figure 1. Evolutionary relationship of the Vibrionaceae family [3–7]. 

 



Mar. Drugs 2011, 9 

 

 

1442

1.1. Occurrence and Ecological Significance 

Vibrios are particularly abundant on the surface of marine macroorganisms such as corals, fish, 

seagrass, sponges, and zooplankton, where they form commensal, symbiotic, or pathogenic 

associations [1]. Excellent books and reviews have been published on the taxonomy [8], 

ecology [1,9,10], and pathogenesis of vibrios [11–14]. Several species are well studied and serve as 

model systems for understanding symbioses [15,16], interspecies signaling [17], and pathogen 

persistence [11,18]. A particularly famed vibrio is Vibrio fischeri, known for its light organ symbiosis 

with the Hawaiian squid Euprymna scolopes [15]. V. fischeri colonizes the squid light organ and 

provides bioluminescence for the squid to use as countershading in order to evade predators. In return, 

the bacteria gain a protected nutrient environment. The discovery of N-acylhomoserine lactones 

(Figure 2) as quorum sensing signals was first made in V. fischeri and the LuxI/R system of V. fischeri 

is the paradigm of Gram-negative QS systems even though it is not found in all vibrios [18]. In 

V. fischeri, there are three distinct QS signals; 3-oxo-C6-HSL (1), C8-HSL (2), and AI-2 (3). These are 

used to control a regulatory cascade leading to induction of luminescence. Vibrios also use QS to 

control traits such as virulence and biofilm formation [17].  

Figure 2. Structures common quorum sensing molecules from Vibrio sp. 

 

The Vibrionaceae include species that are opportunistic pathogens of humans and marine animals. 

V. vulnificus, V. parahaemolyticus, and V. cholerae are serious human pathogens. V. cholerae probably 

has the greatest impact on human health, causing the acute diarrheal disease cholera that can result in 

epidemics [11]. It is a very persistent bacterium that can survive on a variety of vectors, including 

zooplankton [19] and cyanobacteria [18]. V. parahaemolyticus [20] and V. vulnificus [12] are  

food-borne pathogens associated with the ingestion of raw seafood. V. anguillarum, V. salmonicida, 

and V. vulnificus are important fish pathogens and are widespread in aquaculture settings, where 

conditions seem to enhance their virulence [1].  

The ability to form biofilms is widespread among vibrios and plays a significant role in the 

pathogenicity of V. cholera [21], V. parahaemolyticus, and V. vulnificus [22], as well as in the 
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symbiotic colonization by V. fischeri [23,24]. Key proteins include pili, lectins, exopolysaccharides, 

and components involved in the formation of flagella [22]. Though vibrios share a high number of 

regulatory systems of biofilm formation, there are differences that could reflect different niche 

specificity or ecological roles [25]. For example, it appears that vibrios produce species-specific 

exopolysaccharides, the major component of bacterial biofilms, and often have the potential to produce 

more than one type [22].  

High densities of Vibrio and Photobacterium on the surface of zooplankton [26] have in part been 

ascribed to the ability of vibrios to utilize chitin, an N-acetyl D-glucosamine polymer in zooplankton 

exoskeletons, as carbon and nitrogen source [27]. The presence of chitinases and chitinase encoding 

genes has been confirmed for several members of the family [27,28]. Chitin controls several genetic 

and physiological characteristics of vibrios [19] including antagonistic activity [29]. Also, vibrios are 

able to degrade other complex carbohydrates such as fucoidan and laminarin found in algal  

species [29,30]. Thus, this superior nutrient utilization may be one of the reasons for the ubiquitous 

presence of vibrios in the marine environment [31].  

1.2. Genomic Diversity and Phylogeny 

In contrast to most γ-proteobacteria, vibrios possess two circular chromosomes [32,33]. Essential 

functions and housekeeping genes are usually located on the large chromosome ChrI, which is rather 

constant in size (~3 Mb), while the smaller ChrII is flexible in size, ranging between 0.8–2.4 Mb [9]. 

ChrII contains accessory genes related to transcriptional regulation, for example, pathogenicity and 

antimicrobial resistance [9,34]. Genes encoding chitin metabolism and quorum sensing are split 

between the two chromosomes [9]. The ability of vibrios to vary the copy numbers of the two 

chromosomes is suspected to be involved in the adaptation to varying environmental conditions [34]. 

Horizontal gene transfer is involved in the genetic flexibility of vibrios, including transduction  

by phages, plasmid conjugation [35], and so-called “super-integrons” [36,37]. In addition,  

Meibom et al. (2005) [38] showed that vibrios become naturally competent when grown in the 

presence of chitin, allowing uptake of free DNA from the environment. Chitin-induced competence 

has been demonstrated in V. cholera [38], V. vulnificus [39], and V. fischeri [40].  

The high genomic diversity of vibrios can be directly translated into high phenotypic variability [41]. 

This makes it difficult to obtain meaningful groupings of vibrios at genus and species level based on 

isolated phenotypical markers [1]. Also, the 16S rRNA gene is highly conserved, and present in 

serveral alleles, among the Vibrionaceae and not well suited for identification to the species level [41]. 

Attempts to improve the taxonomy include sequencing and comparison of various housekeeping genes, 

including recA, rpoA, toxR, which hold greater sequence variability than 16S [41,42]. Taxonomy of 

vibrios by genetic markers has been supplemented by chemical analyses, including fatty acid methyl 

ester (FAME) profiling, and more recently by whole-cell MALDI-TOF MS [43,44], and LC-UV/MS 

chemical profiling [29,45]. Chemotyping was found to be especially useful at sub-species level, 

identifying differences in antibiotic production [29]. Whole-cell MALDI-TOF MS was able to 

distinguish closely related species like V. parahaemolyticus and V. alginolyticus or V. cholerae and  

V. mimicus scouting potential biomarkers within a 4000–14,000 Da mass range [43]. Closely related 

species (V. coralliilyticus and V. neptunius) could be distinguished based on their secondary metabolite 
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production (Figure 3) [45]. Despite intra-species differences [29], the chemical profiles corroborated 

the phylogenetic relationship and clearly showed that production of secondary metabolites in vibrios is 

more than a strain specific trait. 

Figure 3. LC-MS profiles of a V. coralliilyticus (A) and V. neptunius (B), showing 

significant differences in secondary metabolite production. Andrimid (RT 10.02) was only 

found in V. coralliilyticus strains. Figure modified from Wietz et al. (2010) [45]. 

 

2. Natural Product Production by Members of the Vibrionaceae Family 

Considering their widespread presence in the marine environment and their genomic flexibility, 

vibrios are largely underexplored for their proclivity to produce secondary metabolites. So far, a total 

of 93 compounds have been isolated from Vibrionaceae. The majority of these compounds have been 

isolated from only three species; V. parahaemolyticus, V. anguillarum, and V. vulnificus, which is 

likely a reflection of their importance as pathogens. In the following, all metabolites reported  

from Vibrionaceae (Table 1) will be presented and interesting compounds highlighted in an attempt to 

give an overview of the chemical diversity and assess the biosynthetic potential of this group  

of bacteria.  
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Table 1. Bioactive compounds produced by marine Vibrionaceae. Excluded from the list 

are sugars, fatty acids, and small peptides commonly found in marine culturable bacteria. 

Excluded are also compounds from AntiBase 2010 whose presence could not be confirmed 

in any reference referring to Vibrionaceae.  

Bioactivities Name Compound class Source 
Other 

activities 
Ref. 

Antibacterial 

Andrimid (4) Pyrrolidinedione V. coralliilyticus   [45,46] 

Aqabamycin A (6) Nitro maleimide Vibrio sp. Anticancer [47,48] 

Aqabamycin B (7) 

Aqabamycin C (8) 

Aqabamycin D (9) 

Aqabamycin E (10) Maleimide oxime 

Aqabamycin E’ (11) 

Aqabamycin F (12) 

Aqabamycin G (13) Nitro maleimide 

B-4607-C Phenazine Vibrio sp.   [49] 

Cycloprodigiosin (15) Prodiginine V. gazogenes  [50] 

3,5-Dibromo-2-(3′,5′-dibromo-

2′-methoxyphenoxy)-phenol 

Diphenyl ether Vibrio sp.  Antifungal [51,52] 

2,2-Di-(3-indolyl)-3-indolone Indole V. parahaemolyticus  [53,54] 

Griseoluteic acid Phenazine Vibrio sp.   [49] 

Holomycin (5) Pyrrothine P. halotolerans  [45] 

Indazole-3-carbaldehyde Indazole Vibrio sp. Anticancer [47] 

Magnesidin A (16) Tetramic acid Mg2+ 

salt 

V. gazogenes Antialgal [55] 

Moiramide B Pyrrolidinedione Vibrio sp.  [56] 

Ngercheumicin A (19) Depsipeptide Photobacterium sp.  [57] 

Ngercheumicin B (20) 

Ngercheumicin C (21) 

Ngercheumicin D (22) 

Ngercheumicin E (23) 

Pelagiomicin C Phenazine Vibrio sp. Anticancer [49,58,59] 

Prodigiosin (14) Prodiginine V. psychroerythrus 

V. gazogenes 

V. ruber 

Antiprotozoan 

antifungal 

anticancer 

[60–62] 

Turbomycin Indole Vibrio sp. 

(V. parahaemolyticus) 

Antifungal [54] 

Unnarmicin A (17) Depsipeptide Photobacterium sp. Antifungal [63] 

Unnarmicin C (18) 

Vibrindole A Indole V. parahaemolyticus Antifungal [53] 
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Table 1. Cont. 

Bioactivities Name Compound class Source 
Other 

activities 
Ref. 

Siderophore 

Anguibactin (24) Catechol 

hydroxamate 

V. anguillarum Anticancer [64,65] 

Aerobactin Hydroxamate Vibrio sp.  [66] 

Amphibactin B Hydroxamate 

(amphiphilic) 

Vibrio sp.  [67] 

Amphibactin C 

Amphibactin D 

Amphibactin E 

Amphibactin F 

Amphibactin G 

Amphibactin H 

Amphibactin I 

Bis-[3-(2,3-dihydroxy-

benzoylamino)-propyl]-amin 

Catechol V. fluvialis  [68] 

Bisucaberin (29) Hydroxamate V. salmonicida Anticancer [69,70] 

Divanchrobactin Catechol Vibrio sp.  [65] 

Fluvibactin (28) Catechol 

Hydroxyphenyl-

oxazolone 

V. fluvialis  [66] 

Trivanchrobactin Catechol Vibrio sp.  [65] 

Vanchrobactin (25) Catechol V. anguillarum   [71] 

Vibriobactin (27) Catechol 

Hydroxyphenyl-

oxazolone 

V. cholerae  [72] 

Vibrioferrin Carboxylate V. parahaemolyticus  [73] 

Vulnibactin (26) Catechol 

Hydroxyphenyl-

oxazolone 

V. vulnificus  [74] 

Vulnibactin 2 Vulnibactin 

precursor Vulnibactin 3 

Anticancer 

Kahalalide F (30) Depsipeptide V. mediterranei  

(V. shilonii) 

Antibacterial 

antimalarial 

antifungal 

[75] 

Kahalalide H  [76] 

Kahalalide J 
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Table 1. Cont. 

Bioactivities Name Compound class Source 
Other 

activities 
Ref. 

Quorum 

sensing 

interference 

AI-2 (3) Furanosyl borate 

diester 

Vibrio QS [76] 

N-hexanoyl-L-homoserine 

lactone 

Homoserine 

lactone 

V. anguillarum QS [77] 

N-(3-hydroxybutanoyl)-L-

homoserine lactone 

Homoserine 

lactone 

V. harveyi QS [78] 

N-(3-hydroxyhexanoyl)-L-

homoserine lactone  

Homoserine 

lactone 

V. anguillarum  QS [79] 

[1-(2′-methylpropoxy)-2-

hydroxy-2-methyl-

propoxy]butane (41) 

 P. angustum  

(V. angustum) 

QS [80] 

N-(3-oxodecanoyl)-L-

homoserine lactone 

Homoserine 

lactone 

V. anguillarum QS [81] 

N-(3-oxohexanoyl)-L-

homoserine lactone (1) 

Homoserine 

lactone 

V. fischeri 

V. cholerae 

V. harveyi 

V. anguillarum 

QS [17,82] 

N-octanoyl-L-homoserine 

lactone (2) 

Homoserine 

lactone 

V. fischeri QS [77] 

Solonamide A (32) Depsipeptide P. halotolerans QSI Gram pos [83] 

Solonamide B (33) 

Na channel 

blocker 

Anhydro-tetrodotoxin  Vibrio sp.  [84,85] 

4-epi-tetrodotoxin  Vibrio sp.  [84,85] 

Tetrodonic acid  Vibrio sp.  [85,86] 

Tetrodotoxin (31)  V. harveyi 

V. alginolyticus 

V. fischeri 

 [84,85,87]

Riboflavin 

synthase 

inhibitor 

7-hydroxy-6-methyl-8-(1-D-

ribityl)lumazine 

Pteridine P. phosphoreum  [88] 

Photolumazine A 

Photolumazine B 

Photolumazine C 
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Table 1. Cont. 

Bioactivities Name Compound class Source 
Other 

activities 
Ref. 

Misc. 

Arundine Indole V. parahaemolyticus  [54] 

Benzoic acid Aromatic Vibrio sp.  [47] 

3,3-Bis-(3-indolyl)butan-2-one Indole V. parahaemolyticus  [54] 

3,3′-Bisindolylmethane 

1,4-dithiane  Vibrio sp.  [47] 

3-hydroxybenzoic acid Aromatic Vibrio sp.  [47] 

4-hydroxycinnamic acid 

p-Hydroxyphenyl-acetamide Aromatic V. parahaemolyticus  [54] 

Indole-3-carboxaldehyde Indole V. parahaemolyticus  [53] 

Indole-3-acetic acid Indole Vibrio sp.  [89] 

6-methyl-8-D-ribityl-2,4,7-

trioxopteridine 

Pteridine P. phosphoreum  [90] 

3-nitro-4-hydroxy-benzaldehyde Nitro aromatic Vibrio sp.  [47] 

3-nitro-4-hydroxycinnamic acid 

3-nitro-1H-indazole 

Pharacine (43) Terephthalic ester V. parahaemolyticus  [54] 

Phenylacetic acid Aromatic Vibrio sp.  [47] 

Phenyl-2-bis-indolylmethane Indol 

Photopterin A Pteridine P. phosphoreum  [90] 

8-D-ribityl-2,4,7-trioxopteridine 

Trisindoline Indole V. parahaemolyticus  [54] 

1,1,3-Tris-(3-indolyl)butane 

1,1′,1″-Trisindolyl-methane (42) 

2.1. Compounds with Antibacterial Activity 

Some marine vibrios produce antibacterial compounds [91–93] that are believed to contribute to 

their abundance in surface-associated communities [94]. Long and Azam (2001) [92] studied  

anta-gonistic interactions among pelagic bacteria and found that vibrios produced broad-range 

antibacterial compounds. Similar capabilities have been observed for coral-associated vibrios [95]. 

Yet, none of these compounds were isolated and structurally characterized. The relatively widespread 

production of antibiotics in marine vibrios [45] indicates that antagonistic activity is of ecological 

importance [29].  

Probably the best studied antibiotic produced by vibrios is the hybrid NRPS-PKS peptide antibiotic 

andrimid (4) (Figure 4) [46]. The compound interferes with fatty acid biosynthesis [96] and is effective 

against a wide range of bacteria [97]. Structure-activity studies by Pohlmann et al. (2005) [96] 

revealed that the pyrrolidinedione head was essential for activity, while variations in the fatty acid tail 

were more tolerable. This suggested that these two structural moieties play different roles in  

target binding.  
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Figure 4. Structure of andrimid isolated from Vibrio coralliilyticus. 

 

Andrimid is a cosmopolitan antibiotic found in distantly related bacteria, including a symbiotic 

Enterobacter sp. from the planthopper Nilaparvata lugens [98], Pseudomonas flourescens [99], 

Pantoea agglomerans [100], and Vibrio sp. [45,46]. The andrimid biosynthetic gene cluster was 

conserved in two different producers [101]. Interestingly, the cluster encodes resistance genes [102] as 

well as specific transposases that could be responsible for the diverse occurrence of this  

antibiotic [100,101]. From Vibrio species, the compound was first isolated by Oclarit et al. in 1994 [46], 

and Long et al. (2005) [93] identified andrimid as the compound responsible for the growth inhibition 

of V. cholerae by an unidentified Vibrio strain. Production of andrimid was for the first time linked to 

a specific vibrio species by Wietz et al. (2010) [45] that isolated the compound from the culture broth 

of a V. coralliillyticus strain S2052. Within V. coralliilyticus, the production of andrimid is a marker of 

different chemotypes [29]. Two V. coralliilyticus strains S2052 and S4053 from two distant 

geographical locations produced andrimid [45], while the type strain and a close relative did not [29]. 

Interestingly, V. coralliilyticus S2052 focused its production of secondary metabolites to the 

production of andrimid when grown on chitin and also increased the yield of the antibiotic [29]. The 

bacterium was capable of producing andrimid in a live chitin model system with Artemia [29]. This 

indicated that andrimid potentially contributes to different niche-specificities of V. coralliilyticus.  

Another example of cosmopolitan antibiotics from Vibrionaceae is the highly potent pyrrothine 

antibiotic, holomycin (5) (Figure 5) isolated from a strain closely related to Photobacterium 

halotolerans [45]. Prior to this isolation, holomycin had only been isolated from actinomycetes, 

including Streptomyces clavuligerus [103], S. griseus [104], and a marine Streptomyces sp. [105].  

Figure 5. Structure of holomycin isolated from Photobacterium halotolerans. 

 

The NRPS biosynthetic cluster encoding holomycin in S. clavuligerus was recently identified by Li 

and Walsh (2010) [106], and this allows for the comparison of the holomycin clusters in other 

producers, including Photobacterium. Holomycin has a broad spectrum of antibacterial activity against 

pathogenic bacteria such as Staphylococcus aureus, S. pneumoniae, S. epidermis, Enterococcus 
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faecalis, and Escherichia coli [107]. The mode-of-action in E. coli includes inhibition of RNA chain 

elongation, but holomycin is suspected to act as prodrug rather than a direct inhibitor of the RNA 

polymerase [107]. Holomycin is also strongly inhibitory against several marine strains from the 

Roseobacter-clade, Pseudoalteromonas, and Vibrio, including pathogens such as V. harveyi,  

V. vulnificus, and V. parahaemolyticus [45], altogether suggesting that holomycin plays a role in 

antagonism in the marine environment. 

Yao and Al-Zereini recently (2010) [47,48] isolated a series of nitrosubstrituted maleimides called 

aqabamycins (6–13) (Figure 6) from a coral-associated Vibrio sp. The analogues had varying 

antibacterial activity against Gram-positive bacteria, including Micrococcus luteus, Bacillus subtilis, 

and B. brevis as well as cytotoxic activity [48]. The aqabamycins represent a unique structural group 

both due to their high degree of nitrosubstitution which is rare in nature [108] and the maleimide 

monoxime present in aqabamycin E/E’ (10–11) and F (12).  

Figure 6. Structures of aqabamycin A–G isolated from coral-associated Vibrio sp. 

 

The red pigment and antibiotic prodigiosin (14) (Figure 7) has been isolated from 

V. psychroerythreus [60], V. gazogenes (originally termed Beneckea gazogenes but later revised) [61], 

and V. ruber [62]. Additional producers of this compound include Alteromonas rubra/ 

Pseudoalteromonas rubra [109,110], Hahella chejuensis [111], and different Serratia [112], and 

Streptomyces species [113,114]. Prodigiosin and its cyclized analogue (15) [50,115] have a broad 

range of biological activities, including antimicrobial, antimalarial, immunosuppressive, and 

anticancer [116–118]. Prodiginines have clinical potential in anticancer therapy [118], and prodigiosin 
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is currently in preclinical trials (Aida Pharmaceuticals) for pancreatic cancer [116]. The clinical 

potential as antibiotics is, however, limited due to a low therapeutic window and considerable toxic 

effects [119]. Starič et al. (2010) [120] recently demonstrated that the production of prodiginines in a 

Vibrio sp. isolated from estuaries conferred competitiveness against a Bacillus sp. from the same 

sample, suggesting that prodigiosin might act as a antibiotic in the natural environment. Interestingly, 

the prodigiosin producing V. gazogenes also produced the unique magnesium containing antibiotic, 

magnesidin (16) (Figure 7) [55,121–123].  

Figure 7. Structures of prodigiosins and magnesidin. 

 

Shizuri and co-workers isolated two distinct groups of depsipeptides (Figure 8), the unnarmicins [63] 

and ngercheumicins [57] from a Photobacterium sp. with potent, but narrow-spectrum antibacterial 

effect against strains of Pseudovibrio. The unnarmicin A (17) and C (18) consist of four amino acids 

(L-Phe, L-Leu, D-Phe, L-Leu) and a 3-hydroxyoctanoic and 3-hydroxyhexanoic fatty acid, respectively. 

The ngercheumicins A–E have a depsipeptide macrocycle and either a fatty acid (19–20) or peptide tail 

(21–23). They have been patented for treating infections caused by Pseudovibrio denitrificans, though 

no literature describes pathogenic traits of this bacterium [124].  
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Figure 8. Cyclodepsipeptides isolated from Photobacterium sp. 

 

2.2. Siderophores 

Many vibrios produce siderophores as a strategy to sequester iron in the marine environment, where 

the iron level is extremely low [125,126]. This is necessary to maintain important enzymatic processes 

(with iron as cofactor) and a prerequisite for pathogenicity for many vibrios. It should be mentioned 

that siderophores also may have antibacterial activity but are dealt with in a separate section due to 

their specific metabolic function.  

A great structural diversity has been observed among the siderophores produced by Vibrio species 

(Figure 9). V. anguillarum has at least two different siderophore-mediated systems, namely 

anguibactin (24) [64,127] and vanchrobactin (25) [128]. The non-ribosomal peptide anguibactin 

represents a unique structural class of siderophores with both a catechol and hydroxamate ligand and a 

thiazole core [64]. The biosynthetic genes encoding this compound are found on a 65-kb virulence 

plasmid in some V. anguillarum strains. Knock-out of genes involved in anguibactin production 

attenuated virulence, confirming that anguibactin is a prerequisite for successful host-invasion of this 

bacterium [129]. In contrast, the catechol vanchrobactin is chromosome-encoded, and interestingly, the 

coding genes are silenced in anguibactin producing strains [71,130]. Recently, dimeric and trimeric 

versions of vanchrobactin were isolated from an unidentified Vibrio by Sandy et al. (2010) [65]. Also, 

they found anguibactin to possess cytotoxic activities against P388 murine leukemia cells [65].  
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Vibriobactin (27) [72], vulnibactin (26) [74], and fluvibactin (28) (Figure 9) [68] are unique 

siderophores produced by V. cholerae, V. vulnificus, and V. fluvialis, respectively. They are all 

catechol hydroxyphenyloxalone siderophores that share a rare norspermidine backbone, giving them a 

propeller-like structure. In vibriobactin and vulnibactin, two of the hydroxybenzoyl moieties are linked 

to the backbone through an L-threonine, forming an oxazoline ring. Fluvibactin only has one oxazoline 

ring, with one hydroxybenzoyl directly linked to the norspermidine terminal. Vibriobactin and 

vulnibactin differ only in the number of hydroxylations, and this high structural similarity enables 

cross-utilization of these two siderophores [74].  

Figure 9. Siderophores isolated from Vibrio sp. 

 

Bisucaberin (29) (Figure 9) [69] is a symmetric cyclic dihydroxamate produced by the fish 

pathogen V. salmonicida [70]. Unlike most other vibrio siderophores [129], bisucaberin is produced 
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alcohols are assembled through amide or ester bonds [132]. Bisucaberin was found to be useful in 

combinatorial anticancer therapy by sensitizing tumor cells to macrophage-mediated cytolysis [69,133]. 

Siderophores are used as therapeutic deferration agents to treat iron overload in chronically 

transfused thalassemia patients. A stereochemically modified version of fluvibactin efficiently 

removed iron without increasing microbial growth [134]. It has been suggested that siderophores can 

be used for the development of a new class of “trojan horse” antibiotics [135]. Siderophore-antibiotic 

conjugates exploit the iron transport system of the pathogen to penetrate the bacterial outer membrane, 

increasing the antibacterial activity of the antibiotic [136]. Recently, Bergeron et al. (2009) [137] made 

a conjugate linking antibodies to vulnibactin as a strategy towards a vaccine against V. vulnificus. 

2.3. Compounds with Other Activities 

Another interesting group of compounds produced by a member of the Vibrionaceae is the 

kahalalides. These cyclic depsipeptides were originally isolated from the herbivorous mollusc 

Elysia refescens and its diet, the green algae Bryopsis sp. In particular, kahalalide F (30) (Figure 10) 

has an attractive spectrum of activities against AIDS-related opportunistic infections and against 

cancer cell lines [138]. Kahalalide F is currently undergoing Phase II clinical trials (PharmaMar) for 

the treatment of prostate, lung, and liver cancer [138] and in patients with severe psoriasis 

(PharmaMar/Marinomed) [139]. Interestingly, Hill and Hamann (2005) [75] found kahalalide F as well 

as two analogues to be produced by a V. mediterranei/shilonii. The finding of a microbial origin for 

this compound allows for the large-scale industrial fermentation of this compound rather than arduous 

organic synthesis.  

Figure 10. Structure of kahalalide F isolated from Vibrio mediterranei/shilonii. 

 

Several vibrios produce the potent neurotoxin tetrodotoxin (TTX) (31) (Figure 11), also known as 

the pufferfish poison [85]. The true origin of TTX has been the subject of much debate [140], 

nonetheless V. harveyi and V. alginolyticus isolated from different species of pufferfish produced the 

toxin as well as several analogues [84]. Also, V. fischeri isolated from the intestines of the xanthid 

crab, Atergatis floridus produced TTX [87]. Vibrios dominated the intestinal microbiota of the 

pufferfish, Fugu vermicularis vermicularis [84], suggesting that the toxification is caused by  
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TTX-producing bacteria accumulated through the food web [85]. The role of these compounds to 

vibrio itself is still unclear, though it has been suggested to play a role in regulating sodium 

transport [85]. 

Figure 11. Structure of tetrodotoxin isolated from Vibrio harveyi and Vibrio alginolyticus. 

 

Vibrios produce compounds that interfere with the quorum sensing system of Gram-positive 

bacteria. From a strain related to P. halotolerans two novel depsipeptides (Figure 12), solonamides A 

and B (32–33) that interfere with QS regulated virulence genes in S. aureus were isolated [83]. In 

particular, solonamide B dramatically reduced expression of both hla encoding α-hemolysin and 

RNAIII, while increasing expression of spa encoding Protein A. This suggested that the depsipeptides 

interfere with agr, the global virulence regulator in S. aureus. High structural similarity of the 

solonamides to the natural autoinducers of the agr system suggested that they might be competitive 

inhibitors. Interestingly, the solonamides had a pronounced effect on virulence gene expression in 

S. aureus strain USA300, which is the predominant community-acquired MRSA (CA-MRSA) strain in 

the USA [141]. The solonamides strongly resemble the unnarmicins (17–18) found in an unidentified 

Photobacterium sp. (Section 2.3.1) [63]. Thus, it is possible that the unnarmicins also possess  

QSI activity.  

Figure 12. Structures of solonamides isolated from Photobacterium halotolerans  

related strain. 
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dipeptides represent a new class of naturally occurring QS signals potentially involved in interspecies 

signaling, as DKPs are found in most culturable marine bacteria [143]. However, some DKPs are 

likely to be artifacts generated from media components during work-up procedures [144]. De Nys et al. 

(2001) [80] isolated [1-(2′-methylpropoxy)-2-hydroxy-2-methylpropoxy]-butane (37) (Figure 13) from 

P. angustum (V. angustum) S14 with the ability to mediate expression in two AHL-regulated systems, 

inducing bioluminescence in V. harveyi and the AHL reporter system in Agrobacterium tumefaciens.  

Figure 13. Structures of common diketopiperazines from Vibrio sp. and  

[1-(2′-methylpropoxy)-2-hydroxy-2-methylpropoxy]-butane. 

 

2.4. Compounds with Unknown Activities 

Vibrios also produce numerous compounds for which no biological activity has been reported so 

far. That includes small-molecule by-products, for example some nitro-substituted compounds such as 

3-nitroindazole and 3-nitro-4-hydroxycinnamic acid [47]. From P. halotolerans S2753, we isolated a 

series of cyclic tetrapeptides (Figure 14); cyclo(L-Val-L-Val-L-Val-L-Val) (38), cyclo(L-Val-L-Leu-L-

Val-L-Leu) (39), cyclo(L-Val-L-Ile-L-Val-L-Ile) (40), and cyclo(L-Leu-L-Ile-L-Leu-L-Ile) (41) 

(Kjaerullf and Mansson, unpublished data). These types of peptides are often found in marine 

culturable bacteria [145–147], suggesting that they are storage compounds accumulated during growth 

under excess nutrients.  

Many of compounds isolated from vibrios are suspected to be artifacts generated from media 

components during work-up procedures [54,144,148]. These include several bis- and trisindole 

derivatives from a V. parahaemolyticus strain, Bio249 [54]. An example is 1,1,1-tris (3-indolyl) 

methane (42) (Figure 15) that could easily be formed by simple condensation of indole-3-carbaldehyde 

and indole, both having been isolated from V. parahaemolyticus [54]. From the same 

V. parahaemolyticus strain, the cyclic terephthalic acid ester, pharacine (43) [148] was isolated [54]. 

This was suspected to be an artifact from plastic material contaminants; however, fermentation results 

were reproducible with no contact with plastic. Until biosynthetic studies have been performed, the 

true origin of these molecules remains uncertain. 
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Figure 14. Structures of cyclotetrapeptides isolated from Photobacterium. 

 

 

Figure 15. Structures of 1,1,1-tris (3-indolyl) methane and pharacine, examples of 

potential artefacts from work-up of Vibrio extracts. 

 

3. Conclusion 

The versatility and widespread occurrence of vibrios can be ascribed to different characteristics 

such as their superior nutrient utilization, their excellent biofilm formation, and their genetic 
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various environmental changes, for example through the acquisition of biosynthetic genes linked to the 
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incorporated in the biosynthetic cluster itself, making it even more prone to gene-exchange. The 

antibiotic andrimid is an example of a compound encoded by such a “nomadic gene cluster” [149].  

Production of secondary metabolites in vibrios has been linked to antagonism, intraspecies 

communication, and pathogenicity. The compounds produced by vibrios are mainly non-ribosomal 

peptides or hybrids hereof, with examples of N-containing compounds produced by NRPS-independent 

pathways. Despite this narrow structural span compared to metabolites produced by other marine 

bacteria, vibrios produce compounds with a broad range of interesting biological activities. For 

example the solonamides, cyclic depsipeptides from P. halotolerans were found to attenuate virulence 

in a CA-MRSA strain [83] and the cyclic depsipeptide kahalalide F from V. medierranei [75] that is 

undergoing Phase II clinical trials for the treatment of prostate, lung, and liver cancer [138].  

Many vibrios have multiple lifestyles, including a planktonic (free swimming), sessile (attached to 

zooplankton or other surfaces), and a pathogenic form [1]. As production of secondary metabolites 

often confers a selective advantage to the producing organism [150], the diverse lifestyles of these 

bacteria are reflected in their metabolic capabilities. There are intraspecies variations in the compounds 

produced, with different chemotypes potentially reflecting niche adaptation. For example, antagonistic 

strains of V. coralliilyticus were found to produce andrimid in high yields, while pathogenic related 

strains did not have the ability to produce the antibiotic [29].  

The cosmopolitan occurrence of several vibrio metabolites raises the question whether there are 

unique Vibrionaceae metabolites. Of the 227 vibrio genomes sequenced so far [2,151], only a fraction 

has been fully assembled [33], mainly pathogenic V. cholerae strains [9], and none have been 

functionally annotated with regard to the presence of biosynthetic clusters. Thus, it is still uncertain 

whether these bacteria represent a novel “hotspot” of secondary metabolites. For the future, it will be 

of utmost interest to extend full-genome sequencing to other vibrios and investigate the prevalence of 

biosynthetic genes linked to secondary metabolism. Also, this will make it possible to compare 

homology of biosynthetic genes between diverse producers of cosmopolitan antibiotics. Overall, this 

will allow insight into the ecological roles of these bacteria and the environmental and physiological 

parameters governing production of their secondary metabolites.  
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