51 research outputs found

    Investigation of Reaction Intermediates and Ion Structures in the Gas-Phase

    Get PDF
    The present work comprises three independent studies in which novel infrared ion spectroscopy data sets as well as extensive theoretical computational data and EI/ESI mass spectrometry results were acquired. In these studies, we mainly used methods of cryogenic messenger and IRMPD ion spectroscopy at room temperature combined with sophisticated computational chemistry based on ions formed by mass spectrometry to characterize and identify ion structures of important species in the gas-phase. The molecular ions of phenol and aniline as well as the common fragment ion at m/z 66 formed by electron ionization were examined with cryogenic messenger ion spectroscopy. According to our data, aromatic ground state molecular ions of phenol and aniline are clearly identified. However, as reported in the literature, our data set supports the assumption that tautomeric molecular ions of phenol and aniline are only short-lived intermediates on the reaction pathway towards the final loss of CO in case of phenol and the loss of HNC in the case of aniline. The potential energy surfaces of their reaction trajectories further indicate that once they isomerized, they possess more than enough energy to directly decompose, showing that the isomerization is the kinetic bottleneck of these reactions. We further showed that the common fragment ion at m/z 66 is indeed the cyclopentadiene radical cation in both cases as proposed in the literature. The present work also provides independent evidence for the structures of the product ions formed by the intriguing 2H and 3H rearrangement reactions and subsequent fragmentation in EI and ESI-MS with IRMPD ion spectroscopy discovered by Kuck et al. several decades ago. In the early reports it was pointed out that the proposed mechanisms and ion structures remain speculative and need further evidence, which is what motivated us to investigate and clarify these interesting reactions with modern techniques, that have not been available at the time. We found that the 2H rearrangement product C9H14N+ at m/z 136 is N,N-dimethyl-4-toluidine, however, protonated at the position 2 instead of the ipso position 4 as reported earlier. The structure of the 3H rearrangement had to be revised, because our data proofs that the rearranged fragment ion C8H13N• present at m/z 123 is the radical cationic N,N-dimethyl-2,3-dihydro-4- toluidine. Our calculations also showed that this isomer is the most stable one in the ion series tested in this work. We furthermore propose revised mechanisms for the 2H and 3H rearrangement reactions based on the new data sets from computational chemistry and IRMPD ion spectroscopy. The last part of this work reports the investigation of the Claisen and Aza-Claisen rearrangement in the gas-phase with ESI-MS, IRMPD ion spectroscopy and computational chemistry. Our data indicates that before the Claisen rearrangement occurs, the molecular ion [M+H]+ of allyl-2,4,6 trimethylphenylether is protonated in ortho-position to the ether-group, which is an interesting finding and different from most common textbook literature, in which such species are usually protonated at the oxygen. Upon collision activation of this molecular ion the sidechain migrates to the ortho position and is not transferred further to the paraposition as the Claisen-Cope-Tandem reaction would suggest. In addition, we found that the rearrangement already occurred without any activation in case of the Aza-Claisen, reflecting the lower energy needed for the Aza-Claisen rearrangement to be triggered. We also proposed a new mechanism in this case for the Claisen rearrangement in the gas-phase

    Circulating microRNAs in sera correlate with soluble biomarkers of immune activation but do not predict mortality in ART treated individuals with HIV-1 infection: A case control study

    Get PDF
    Introduction: The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. Materials and Methods: A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. Results: None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR- 145 correlated with nadir CD4+ T cell count. Discussion: No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection

    Contribution of PEPFAR-Supported HIV and TB Molecular Diagnostic Networks to COVID-19 Testing Preparedness in 16 Countries.

    Get PDF
    The US President's Emergency Plan for AIDS Relief (PEPFAR) supports molecular HIV and tuberculosis diagnostic networks and information management systems in low- and middle-income countries. We describe how national programs leveraged these PEPFAR-supported laboratory resources for SARS-CoV-2 testing during the COVID-19 pandemic. We sent a spreadsheet template consisting of 46 indicators for assessing the use of PEPFAR-supported diagnostic networks for COVID-19 pandemic response activities during April 1, 2020, to March 31, 2021, to 27 PEPFAR-supported countries or regions. A total of 109 PEPFAR-supported centralized HIV viral load and early infant diagnosis laboratories and 138 decentralized HIV and TB sites reported performing SARS-CoV-2 testing in 16 countries. Together, these sites contributed to >3.4 million SARS-CoV-2 tests during the 1-year period. Our findings illustrate that PEPFAR-supported diagnostic networks provided a wide range of resources to respond to emergency COVID-19 diagnostic testing in 16 low- and middle-income countries

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Development and Validation of a Risk Score for Chronic Kidney Disease in HIV Infection Using Prospective Cohort Data from the D:A:D Study

    Get PDF
    Ristola M. on työryhmien DAD Study Grp ; Royal Free Hosp Clin Cohort ; INSIGHT Study Grp ; SMART Study Grp ; ESPRIT Study Grp jäsen.Background Chronic kidney disease (CKD) is a major health issue for HIV-positive individuals, associated with increased morbidity and mortality. Development and implementation of a risk score model for CKD would allow comparison of the risks and benefits of adding potentially nephrotoxic antiretrovirals to a treatment regimen and would identify those at greatest risk of CKD. The aims of this study were to develop a simple, externally validated, and widely applicable long-term risk score model for CKD in HIV-positive individuals that can guide decision making in clinical practice. Methods and Findings A total of 17,954 HIV-positive individuals from the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study with >= 3 estimated glomerular filtration rate (eGFR) values after 1 January 2004 were included. Baseline was defined as the first eGFR > 60 ml/min/1.73 m2 after 1 January 2004; individuals with exposure to tenofovir, atazanavir, atazanavir/ritonavir, lopinavir/ritonavir, other boosted protease inhibitors before baseline were excluded. CKD was defined as confirmed (>3 mo apart) eGFR In the D:A:D study, 641 individuals developed CKD during 103,185 person-years of follow-up (PYFU; incidence 6.2/1,000 PYFU, 95% CI 5.7-6.7; median follow-up 6.1 y, range 0.3-9.1 y). Older age, intravenous drug use, hepatitis C coinfection, lower baseline eGFR, female gender, lower CD4 count nadir, hypertension, diabetes, and cardiovascular disease (CVD) predicted CKD. The adjusted incidence rate ratios of these nine categorical variables were scaled and summed to create the risk score. The median risk score at baseline was -2 (interquartile range -4 to 2). There was a 1: 393 chance of developing CKD in the next 5 y in the low risk group (risk score = 5, 505 events), respectively. Number needed to harm (NNTH) at 5 y when starting unboosted atazanavir or lopinavir/ritonavir among those with a low risk score was 1,702 (95% CI 1,166-3,367); NNTH was 202 (95% CI 159-278) and 21 (95% CI 19-23), respectively, for those with a medium and high risk score. NNTH was 739 (95% CI 506-1462), 88 (95% CI 69-121), and 9 (95% CI 8-10) for those with a low, medium, and high risk score, respectively, starting tenofovir, atazanavir/ritonavir, or another boosted protease inhibitor. The Royal Free Hospital Clinic Cohort included 2,548 individuals, of whom 94 individuals developed CKD (3.7%) during 18,376 PYFU (median follow-up 7.4 y, range 0.3-12.7 y). Of 2,013 individuals included from the SMART/ESPRIT control arms, 32 individuals developed CKD (1.6%) during 8,452 PYFU (median follow-up 4.1 y, range 0.6-8.1 y). External validation showed that the risk score predicted well in these cohorts. Limitations of this study included limited data on race and no information on proteinuria. Conclusions Both traditional and HIV-related risk factors were predictive of CKD. These factors were used to develop a risk score for CKD in HIV infection, externally validated, that has direct clinical relevance for patients and clinicians to weigh the benefits of certain antiretrovirals against the risk of CKD and to identify those at greatest risk of CKD.Peer reviewe

    Systematic Evaluation of the Influence of Co-Isolation on the Accuracy of TMT Quantification Using Synchronous Precursor Selection MS3 with 1D and 2D Reversed Phase HPLC Nanoflow Mass Spectrometry

    No full text
    Proteomics has become one of the most important fields in biological science research. It addresses the analysis of all proteins present in a specific cell. Quantitative proteomics seeks to measure the relative amount of proteins present in the sample. This work evaluates the influence of the number of precursor ions selected for MS3 analysis in a nanoflow HPLC tandem mass spectrometry experiment using TMT labeling on the degree of co-isolation occurrences that degrade the accuracy of the ion ratios used to measure relative protein expression. A two proteome inference model, with a HeLa whole cell digest as target proteome and a yeast whole cell digest as interfering proteome, was utilized to measure and evaluate interferences caused by co-isolation of HeLa and yeast peptides under various experimental settings. The results show that as the number of selected MS3 precursors is increased, the inference effects from co-isolation increase significantly, increasingly distorting the measured TMT reporter ion ratios. Due to enormous complexity of whole cell protein digests, peptides frequently co-elute limiting the number of peptides that can be sequenced. In addition, isobaric peptides are often co-isolated during the tandem mass spectrometry experiment, causing poor accuracy in measuring relative protein expression levels. This issue is often addressed by fractionating the complex mixtures of peptides using a separation technique which is orthogonal to the low pH reversed phase HPLC separation and which is used prior to mass spectrometric analysis. This work shows that reducing the sample complexity using 2D-HPLC fractionation, in conjunction with an effective concatenation strategy, not only significantly increases protein identifications and average protein coverage, but also greatly mitigates the problems caused by co-isolation that can plague quantification using TMT labeling

    Laparoscopic Adrenalectomy: There Can Be No Doubt

    No full text

    Unidirectional Double- and Triple-Hydrogen Rearrangement Reactions Probed by Infrared Ion Spectroscopy

    No full text
    Zeh D, Bast M, Martens J, et al. Unidirectional Double- and Triple-Hydrogen Rearrangement Reactions Probed by Infrared Ion Spectroscopy. Journal of the American Society for Mass Spectrometry. 2022.Unidirectional double-hydrogen (2H) and triple-hydrogen (3H) rearrangement reactions occur upon electron-ionization-induced fragmentation of trans-2-(4-N,N-dimethylaminobenzyl)-1-indanol (1), trans-2-(4-methoxybenzyl)-1-indanol (2), 4-(4-N,N-dimethylaminophenyl)-2-butanol (3), and related compounds, as reported some 35 years ago (Kuck, D.; Filges, U. Org. Mass Spectrom. 1988, 23, 643-653). These unusual intramolecular redox processes were found to dominate the mass spectra of long-lived, metastable ions. The present report provides independent evidence for the structures of the product ions formed by the 2H and 3H rearrangement in an ion trap instrument. The radical cations 1+ and 3+ as well as ionized 1-(4-N,N-dimethylaminophenyl)-5-(4-methoxyphenyl)-3-pentanol, 5+, were generated by electrospray ionization from anhydrous acetonitrile solutions. The 2H and 3H fragment ions were obtained by collision-induced dissociation and characterized by IR ion spectroscopy and density functional theory calculations. Comparison of the experimental and calculated infrared ion spectra enabled the identification of the 2H rearrangement product ion, C9H14N+ (m/z 136), as an N,N-dimethyl-para-toluidinium ion bearing the extra proton ortho to the amino group, a tautomer which was calculated to be 31 kJ/mol less stable than the corresponding N-protonated form. The 3H rearrangement product ion, C8H13N+ (m/z 123), formerly assumed to be a distonic ammonium ion bearing a cyclohexadienyl radical, was now identified as a conventional radical cation, ionized N,N-dimethyl-2,3-dihydro-para-toluidine. Thus, the 3H rearrangement represents an intramolecular transfer hydrogenation between a secondary alcohol and an ionized aromatic ring. Based on these structural assignments, more detailed mechanisms for the unidirectional 2H and 3H rearrangement reactions are proposed

    Evaluation of the performance of Abbott m2000 and Roche COBAS Ampliprep/COBAS Taqman assays for HIV-1 viral load determination using dried blood spots and dried plasma spots in Kenya.

    No full text
    Routine HIV viral load testing is not widely accessible in most resource-limited settings, including Kenya. To increase access to viral load testing, alternative sample types like dried blood spots (DBS), which overcome the logistic barriers associated with plasma separation and cold chain shipment need to be considered and evaluated. The current study evaluated matched dried blood spots (DBS) and dried plasma spots (DPS) against plasma using the Abbott M 2000 (Abbott) and Roche Cobas Ampliprep/Cobas TaqMan (CAP/CTM) quantitative viral load assays in western Kenya.Matched plasma DBS and DPS were obtained from 200 HIV-1 infected antiretroviral treatment (ART)-experienced patients attending patient support centers in Western Kenya. Standard quantitative assay performance parameters with accompanying 95% confidence intervals (CI) were assessed at the assays lower detection limit (400cps/ml for CAP/CTM and 550cps/ml for Abbott) using SAS version 9.2. Receiver operating curves (ROC) were further used to assess viral-load thresholds with best assay performance (reference assay CAP/CTM plasma).Using the Abbott test, the sensitivity and specificity, respectively, for DPS were (97.3%, [95%CI: 93.2-99.2] and 98.1% [95%CI: 89.7-100]) and those for DBS (93.9% [95%CI: 88.8-97.2] and 88.0% [95%CI: 82.2-92.4]). The correlation and agreement using paired plasma and DPS/DBS were strong, with r2 = 90.5 and rc = 68.1. The Bland-Altman relative percent change was 95.3 for DPS, (95%CI: 90.4-97.7) and 73.6 (95%CI: 51.6-86.5) for DBS. Using the CAP/CTM assay, the sensitivity for DBS was significantly higher compared to DPS (100.0% [95% CI: 97.6-100.0] vs. 94.7% [95%CI: 89.8-97.7]), while the specificity for DBS was lower: 4%, [95% CI: 0.4-13.7] compared to DPS: 94.0%, [95% CI: 83.5-98.7]. When compared under different clinical relevant thresholds, the accuracy for the Abbott assay was 95% at the 1000cps/ml cut-off with a sensitivity and specificity of 96.6% [95% CI 91.8-98.7] and 90.4% [95% CI 78.2-96.4] respectively. The optimum threshold was at 3000 cps/ml with an accuracy of 95.5%, sensitivity and specificity of 94.6% [95%CI 89.3-97.5] and 98.1% [95%CI 88.4-99.9]) respectively. The best threshold for CAP/CTM was at 4000 copies /mL, with 92.5% accuracy (sensitivity of 96.0% [95%CI 91.0-98.3] and specificity of 82.7% [95%CI 69.2-91.3]).There was similar performance between matched DBS, DPS and plasma using the Abbott test, and good correlation for matched DPS and plasma using the CAPCTM test. The findings suggest that DBS and DPS may be reliably used as alternative specimens to plasma to measure HIV-1 VL using Abbott, and DPS may be reliably used with CAP/CTM in resource-limited settings
    corecore