38 research outputs found

    Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success

    Get PDF
    The search for traits associated with plant invasiveness has yielded contradictory results, in part because most previous studies have failed to recognize that different traits are important at different stages along the introduction–naturalization–invasion continuum. Here we show that across six different habitat types in temperate Central Europe, naturalized non-invasive species are functionally similar to native species occurring in the same habitat type, but invasive species are different as they occupy the edge of the plant functional trait space represented in each habitat. This pattern was driven mainly by the greater average height of invasive species. These results suggest that the primary determinant of successful establishment of alien species in resident plant communities is environmental filtering, which is expressed in similar trait distributions. However, to become invasive, established alien species need to be different enough to occupy novel niche space, i.e. the edge of trait space

    Plant taxonomic and phylogenetic turnover increases toward climatic extremes and depends on historical factors in European beech forests

    Get PDF
    Aims: The effect of biogeographical processes on the spatial turnover component of beta-diversity over large spatial extents remains scarcely understood. Here, we aim at disentangling the roles of environmental and historical factors on plant taxonomic and phylogenetic turnover, while controlling for the effects of species richness and rarity. Location: European beech (Fagus sylvatica) forests in Europe. Methods: We aggregated plant species occurrences from vegetation plots in spatial grid cells of 0.25º × 0.25º to calculate the spatial turnover component of taxonomic (TBD) and phylogenetic (PBD) beta-diversity for each cell. We also calculated the deviation of PBD given TBD (PBD), which measures the importance of phylogenetic turnover after factoring out taxonomic turnover. Beta-diversity was calculated for each grid cell as the mean pairwise dissimilarity between the focal cell and all other cells. We used structural equation modeling (SEM) to examine the relationships between environmental (climate, soil pH, and distance from the geographical distribution limit of beech) and historical (distance from beech glacial refugia) predictors and beta-diversity metrics. Results: We found a geographically consistent variation in taxonomic and phylogenetic turnover. Overall, TBD and PBD increased significantly toward more extreme climatic conditions, on more acidic soils, and toward the margins of beech distribution. The effects of environmental variables and the distance from glacial refugia on beta-diversity metrics were mediated by species richness and rarity. Phylogenetic turnover was low in relation to taxonomic turnover (i.e., high PBD) in areas closer to glacial refugia. Conclusions: Continental-scale patterns of beta-diversity in European beech forests are the result of complementary ecological and evolutionary processes. In general, beech forests are taxonomically and phylogenetically more distinct in climatically marginal areas of their European range. However, the spatial variation of beta-diversity in European beech forest flora is still strongly characterized by the distribution of groups of closely related species that evolved or survived in glacial refugia.The study was supported by the Czech Science Foundation (project no.19-28491X). I.B. and J.A.C. were funded by the Basque Government (IT936-16)

    Phylogenetic structure of alien plant species pools from European donor habitats

    Get PDF
    Aim Many plant species native to Europe have naturalized worldwide. We tested whether the phylogenetic structure of the species pools of European habitats is related to the proportion of species from each habitat that has naturalized outside Europe (habitat’s donor role) and whether the donated species are more phylogenetically related to each other than expected by chance. Location Europe (native range), the rest of the world (invaded range). Time period Last c. 100 years. Major taxa studied Angiospermae. Methods We selected 33 habitats in Europe and analysed their species pools, including 9,636 plant species, of which 2,293 have naturalized outside Europe. We assessed the phylogenetic structure of each habitat as the difference between the observed and expected mean pairwise phylogenetic distance (MPD) for (a) the whole species pool and (b) subgroups of species that have naturalized outside Europe and those that have not. We used generalized linear models to test for the effects of the phylogenetic structure and the level of human influence on the habitat’s donor role. Results Habitats strongly to moderately influenced by humans often showed phylogenetically clustered species pools. Within the clustered species pools, those species that have naturalized outside Europe showed a random phylogenetic structure. Species pools of less human-influenced natural habitats varied from phylogenetically clustered to overdispersed, with donated naturalized species also often showing random patterns within the species pools. Donor roles in both habitat groups increased with increasing MPD within habitats. Main conclusions European human-influenced habitats donate closely related species that often naturalize in disturbed habitats outside their native range. Natural habitats donate species from different lineages with various ecological strategies that allow them to succeed in different habitats in the invaded range. However, the naturalized species donated by most European habitats are phylogenetically random subsets of their species pools

    AgriWeedClim database: A repository of vegetation plot data from Central European arable habitats over 100 years

    Get PDF
    Aims: Arable habitats (i.e. fields, orchards, vineyards, and their fallows) were cre- ated by humans and have been essential elements in Central European landscapes for several millennia. In recent decades, these habitats have been drastically altered by changes in land use as well as agricultural practices and, more recently, by climate change. These changes have precipitated substantial changes in vegetation and their spatial and temporal trajectories have not yet been exhaustively studied. Here, we present the AgriWeedClim database —­ a new resource of vegetation plot (relevé) data of arable habitats in Central Europe. Location: Germany, Czech Republic, Slovakia, Switzerland, Liechtenstein, Austria, Hungary, Northern Italy, Slovenia, Croatia. Methods: Vegetation plot data were obtained from large repositories (e.g. European Vegetation Archive), specialized regional databases, colleagues and the literature. Data were then checked for completeness and standardized (e.g. taxonomy, nomenclature, crop types). Species were assigned native, archaeophyte (i.e. alien species introduced before c. 1492 CE) or neophyte (i.e. alien species introduced after c. 1492 CE) status. Results: The AgriWeedClim database version 1.0 contains georeferenced data from 32,889 vegetation plots sampled from 1916 to 2019. Conclusions: We provide an overview of this new resource and present example analyses to show its content and possible applications. We outline potential research questions including analysis of patterns and causes of vegetation changes in arable habitats from the early 20th century to the present

    Phylogenetic structure of European forest vegetation

    Get PDF
    [Aims] (a) To determine the contribution of current macro-environmental factors in explaining the phylogenetic structure of European forest vegetation, (b) to map and describe spatial patterns in their phylogenetic structure and (c) to examine which lineages are the most important contributors to phylogenetic clustering and whether their contribution varies across forest types and regions. [Location] Europe. [Taxon] Angiosperms. [Methods] We analysed the phylogenetic structure of 61,816 georeferenced forest vegetation plots across Europe considering alternative metrics either sensitive to basal (ancient evolutionary dynamics) or terminal (recent dynamics) branching in the phylogeny. We used boosted regression trees to model metrics of the phylogenetic structure as a function of current macro-environmental factors. We also identified clades encompassing significantly more taxa than under random expectation in phylogenetically clustered plots. [Results] Phylogenetic clustering was driven by climatic stress and instability and was strong in the areas glaciated during the Pleistocene, likely reflecting limited postglacial migration, and to a lower extent in areas of northern-central Europe and in summer-dry Mediterranean regions. Phylogenetic overdispersion was frequent in the hemiboreal zone in Russia, in some areas around the Mediterranean Basin, and along the Atlantic seaboard of the Iberian Peninsula. The families Ericaceae, Poaceae and Fagaceae were overrepresented in clustered plots in different regions of Europe. [Main conclusions] We provide the first maps and analyses on the phylogenetic structure of European forest vegetation at the plot level. Our results highlight the role of environmental filtering, postglacial dispersal limitation and spatial transitions between major biomes in determining the distribution of plant lineages in Europe.The study was supported by the Czech Science Foundation (19-28491X). IB and JAC were funded by the Basque Government (IT936-16). JCS considers this work a contribution to his VILLUM Investigator project “Biodiversity Dynamics in a Changing World” funded by VILLUM FONDEN (grant 16549)

    Mapping species richness of plant families in European vegetation

    Get PDF
    Aims: Biodiversity is traditionally studied mostly at the species level, but biogeographical and macroecological studies at higher taxonomic levels can provide valuable insights into the evolutionary processes at large spatial scales. Our aim was to assess the representation of vascular plant families within different vegetation formations across Europe. Location: Europe. Methods: We used a data set of 816,005 vegetation plots from the European Vegetation Archive (EVA). For each plot, we calculated the relative species richness of each plant family as the number of species belonging to that family divided by the total number of species. We mapped the relative species richness, averaged across all plots in 50 km × 50 km grid cells, for each family and broad habitat groups: forests, grasslands, scrub and wetlands. We also calculated the absolute species richness and the Shannon diversity index for each family. Results: We produced 522 maps of mean relative species richness for a total of 152 vascular plant families occurring in forests, grasslands, scrub and wetlands. We found distinct spatial patterns for many combinations of families and habitat groups. The resulting series of 522 maps is freely available, both as images and GIS layers. Conclusions: The distinct spatial patterns revealed in the maps suggest that the relative species richness of plant families at the community level reflects the evolutionary history of individual families. We believe that the maps and associated data can inspire further biogeographical and macroecological studies and strengthen the ongoing integration of phylogenetic, functional and taxonomic diversity concepts.MV, IA, JPC, ZL, IK, AJ and MC were funded by the Czech Science Foundation, programme EXPRO (project no. 19-28491X); JDi by the Czech Science Foundation (18-02773S); IB and JAC by the Basque Government (IT936-16); AČ by the Slovenian Research Agency (ARRS, P1-0236); AK by the National Research Foundation of Ukraine (project no. 2020.01/0140); JŠ by the Slovak Research and Development Agency (APVV 16-0431); KV by the National Science Fund (Contract DCOST 01/7/19.10.2018)

    EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats

    Get PDF
    Aim: The EUNIS Habitat Classification is a widely used reference framework for European habitat types (habitats), but it lacks formal definitions of individual habitats that would enable their unequivocal identification. Our goal was to develop a tool for assigning vegetation‐plot records to the habitats of the EUNIS system, use it to classify a European vegetation‐plot database, and compile statistically‐derived characteristic species combinations and distribution maps for these habitats. Location: Europe. Methods: We developed the classification expert system EUNIS‐ESy, which contains definitions of individual EUNIS habitats based on their species composition and geographic location. Each habitat was formally defined as a formula in a computer language combining algebraic and set‐theoretic concepts with formal logical operators. We applied this expert system to classify 1,261,373 vegetation plots from the European Vegetation Archive (EVA) and other databases. Then we determined diagnostic, constant and dominant species for each habitat by calculating species‐to‐habitat fidelity and constancy (occurrence frequency) in the classified data set. Finally, we mapped the plot locations for each habitat. Results: Formal definitions were developed for 199 habitats at Level 3 of the EUNIS hierarchy, including 25 coastal, 18 wetland, 55 grassland, 43 shrubland, 46 forest and 12 man‐made habitats. The expert system classified 1,125,121 vegetation plots to these habitat groups and 73,188 to other habitats, while 63,064 plots remained unclassified or were classified to more than one habitat. Data on each habitat were summarized in factsheets containing habitat description, distribution map, corresponding syntaxa and characteristic species combination. Conclusions: EUNIS habitats were characterized for the first time in terms of their species composition and distribution, based on a classification of a European database of vegetation plots using the newly developed electronic expert system EUNIS‐ESy. The data provided and the expert system have considerable potential for future use in European nature conservation planning, monitoring and assessment

    Distribution maps of vegetation alliances in Europe

    Get PDF
    Aim: The first comprehensive checklist of European phytosociological alliances, orders and classes (EuroVegChecklist) was published by Mucina et al. (2016, Applied Vegetation Science, 19 (Suppl. 1), 3–264). However, this checklist did not contain detailed information on the distribution of individual vegetation types. Here we provide the first maps of all alliances in Europe. Location: Europe, Greenland, Canary Islands, Madeira, Azores, Cyprus and the Caucasus countries. Methods: We collected data on the occurrence of phytosociological alliances in European countries and regions from literature and vegetation-plot databases. We interpreted and complemented these data using the expert knowledge of an international team of vegetation scientists and matched all the previously reported alliance names and concepts with those of the EuroVegChecklist. We then mapped the occurrence of the EuroVegChecklist alliances in 82 territorial units corresponding to countries, large islands, archipelagos and peninsulas. We subdivided the mainland parts of large or biogeographically heterogeneous countries based on the European biogeographical regions. Specialized alliances of coastal habitats were mapped only for the coastal section of each territorial unit. Results: Distribution maps were prepared for 1,105 alliances of vascular-plant dominated vegetation reported in the EuroVegChecklist. For each territorial unit, three levels of occurrence probability were plotted on the maps: (a) verified occurrence; (b) uncertain occurrence; and (c) absence. The maps of individual alliances were complemented by summary maps of the number of alliances and the alliance–area relationship. Distribution data are also provided in a spreadsheet. Conclusions: The new map series represents the first attempt to characterize the distribution of all vegetation types at the alliance level across Europe. There are still many knowledge gaps, partly due to a lack of data for some regions and partly due to uncertainties in the definition of some alliances. The maps presented here provide a basis for future research aimed at filling these gaps

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore