138 research outputs found

    Multiple exhumation episodes during the Cenozoic Tibetan Plateau build-up

    Get PDF
    <Table 1 Apatite fission-track peak-fitting data and the summary of shape analysis Table S1. Summary of the main morphotectonic events across the NE Tibetan Plateau. Table S2. Apatite fission-track analytical data. Table S3. Existed bedrock apatite fission-track data from the studied regions. Table S4. Summary of the paleoelevation results from the Himalayan-Tibetan orogen. The Table of measurement details of AFT data (including Dpar, track length, shape) and Table of Paleocurrent data are also presented in this dataset

    Multianalytical provenance analysis of Eastern Ross Sea LGM till sediments (Antarctica): Petrography, geochronology, and thermochronology detrital data

    Get PDF
    In order to reveal provenance of detrital sediments supplied by West Antarctic Ice Sheet (WAIS), 19 glaciomarine cores of Last Glacial Maximum age were analyzed from Eastern Ross Sea and Sulzberger Bay. Analytical techniques included petrographic analysis of gravel-sized clasts, geochronology (zircon U-Pb: Zrn-UPb) and thermochronology (apatite fission track: AFT) of sand-sized fractions. Petrographic analysis revealed a similarity with the lithologies presently exposed in western Marie Byrd Land (MBL), with major roles played by low-grade metamorphic rocks and granitoids. Furthermore Zrn-UPb and AFT data allowed to identify the ages of formation and cooling of sedimentary source area, consisting of Cambrian-Precambrian basement (i.e., Swanson Formation in western MBL) which underwent at least two episodes of magma intrusion, migmatization and cooling during Devonian-Carboniferous and Cretaceous-Paleocene times. Scarcity of volcanic clasts in the region of Ross Sea along the front of West Antarctica Ice Streams in association with the occurrence of AFT Oligocene-Pliocene dates suggests a localized tectonic exhumation of portions of MBL, as already documented for the opposite side of West Antarctic Rift System in the Transantarctic Mountains. Furthermore, a Zrn-UPb and AFT population of Late Triassic-Jurassic age indicates the presence of unexposed rocks that formed or metamorphosed at that time in the sedimentary source area, which could be identified in McAyeal Ice Stream and Bindschadler Ice Stream catchment areas

    Thermochronology of the Miocene Arabia-Eurasia collision zone of southeastern Turkey

    Get PDF
    The Bitlis-Piitiirge collision zone of SE Turkey is the area of maximum indentation along the &gt; 2400-km-long Assyrian-Zagros suture between Arabia and Eurasia. The integration of (1) fission-track analyses on apatites, (ii) (U-Th)/He analyses on zircons, (iii) field observations on stratigraphic and structural relationships, and (iv) preexisting U-Pb and Ar-Ar age determinations on zircons, amphiboles, and micas provides for the first time an overall picture of the thermochronometric evolution of this collisional orogen. The data set points to ubiquitous latest Cretaceous metamorphism of a passive margin sedimentary sequence and its igneous basement not only along the suture zone but across the entire width of the Anatolia-Tauride block north of the suture. During the early Paleogene the basement complex of the Bitlis and Piitiirge massifs along the suture was rapidly exhumed due to extensional tectonics in a back-arc setting and eventually overlain by Eocene shallow-marine sediments. The entire Oligocene is characterized by a rather flat thermochronometric evolution in the Bitlis orogenic wedge, contrary to the widely held belief that this epoch marked the inception of the Arabia-Eurasia collision and was characterized by widespread deformation. Deposition of a thick Oligocene sedimentary succession in the Mu-Hinis basin occurred in a retroarc foreland setting unrelated to continental collision. During the Middle Miocene, the Bitlis-Piitiirge orogenic wedge underwent a significant and discrete phase of rapid growth by both frontal accretion, as shown by cooling/exhumation of the foreland deposits on both sides of the orogenic prism, and underplating, as shown by cooling/exhumation of the central metamorphic core of the orogenic wedge. We conclude that continental collision started in the mid-Miocene, as also shown by coeval thick syntectonic clastic wedges deposited in flexural basins along the Arabian plate northern margin and contractional reactivation of a number of preexisting structures in the European foreland

    The role of slab geometry in the exhumation of cordilleran-type orogens and their forelands: Insights from northern Patagonia

    Get PDF
    In cordilleran-type orogens, subduction geometry exerts a fundamental control on the tectonic behavior of the overriding plate. An integrated low-temperature, large thermochronological data set is used in this study to investigate the burial and exhumation history of the overriding plate in northern Patagonia (40°–45°S). Thermal inverse modeling allowed us to establish that a ~2.5–4-km-thick section originally overlaid the Jurassic–Lower Cretaceous successions deposited in half-graben systems that are presently exposed in the foreland. Removal of the sedimentary cover started in the late Early Cretaceous. This was coeval with an increase of the convergence rate and a switch to a westward absolute motion of the South American Plate that was accompanied by shallowing of the subducting slab. Unroofing was probably further enhanced by Late Cretaceous to early Paleogene opening of a slab window beneath the overriding plate. Following a tectonically quiescent period, renewed exhumation occurred in the orogen during relatively fast Neogene plate convergence. However, even the highly sensitive apatite (U-Th)/He thermochronometer does not record any coeval cooling in the foreland. The comparison between Late Cretaceous and Neogene exhumation patterns provides clear evidence of the fundamental role played by inter-plate coupling associated with shallow slab configurations in controlling plate-scale deformation. Our results, besides highlighting for the first time how the whole northern Patagonia foreland was affected by an exhumation of several kilometers since the Late Cretaceous, provide unrivalled evidence of the link between deep geodynamic processes affecting the slab and the modes and timing of unroofing of different sectors of the overriding plate.Fil: Genge, Marie C.. Università di Padova; Italia. Centre National de la Recherche Scientifique; Francia. Université de Lille; Francia. Université du Littoral; FranciaFil: Zattin, Massimiliano. Università di Padova; ItaliaFil: Savignano, Elisa. Università di Padova; ItaliaFil: Franchini, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional de Río Negro. Sede Alto Valle. Instituto de Investigaciones en Paleobiología y Geología; Argentina. Universidad Nacional del Comahue; ArgentinaFil: Gautheron, Cécile. Université Paris Sud; Francia. Centre D'etudes de Saclay; Francia. Centre National de la Recherche Scientifique; FranciaFil: Ramos, Victor Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Mazzoli, Stefano. Università degli Studi di Camerino; Itali

    Reconstrucción de la evolución tectónica del Cerro Domuyo y del extremo norte de la cordillera del viento (36° - 37°s) a partir de la integración de datos geofísicos, estructurales, geocronológicos, y modelos termo-numéricos

    Get PDF
    El Cerro Domuyo es considerado uno de los centros ígneos del Plio-Pleistoceno más voluminosos de los Andes del Sur, y alberga uno de los campos geotérmicos de alta entalpía más grandes del mundo con una importante actividad actual. Su estructura ha sido caracterizada como un amplio anticlinal, con un eje N-S que inclina suavemente hacia el norte, desarrollado durante la orogenia andina y deformado en el Mioceno medio-Plioceno durante el emplazamiento del Complejo Volcánico Domuyo (CVD) (Llambías et al. 1978). El CVD está compuesto por un stock porfídico de composición granítica-diorítica, interpretado como la sección superior de una cámara magmática Miocena-Pliocena media, fuertemente erosionada y parcialmente expuesta, alimentada a través de un sistema de fracturas preexistentes y complementada por una espesa secuencia de rocas volcánicas y volcaniclásticas (Llambías et al. 1978; Miranda et al. 2006).La integración de un análisis estructural detallado con datos geofísicos preexistentes sugiere que el arreglo estructural del área ha sido controlado por la reactivación de estructuras de basamento (Galetto et al. 2018). La estructura principal inferida a lo largo del flanco occidental del cerro Domuyo es la Falla Manchana Covunco (FMC), caracterizada como una falla normal local, con vergencia occidental y rumbo N-S (Galetto et al. 2018). La FMC es una estructura ciega, cubierta por la secuencia volcánica Plio-Cuaternaria, que ejerce un control de primer orden sobre la dinámica del campo geotérmico de Domuyo (Galetto et al. 2018). Un conjunto de fallas de basamento de orientación ∼E-O la intersecta y controla la ubicación de las principales manifestaciones geotérmicas. El modelado termo-numérico de datos geocronológicos de U-Pb en circones magmáticos, junto con datos de trazas de fisión y (U-Th-Sm)/He en apatitas y circones del flanco occidental del cerro Domuyo, revela dos episodios de enfriamiento rápido durante el Albiano-Campaniano (∼110-75 Ma) y el Eoceno (∼55-35 Ma), que pueden ser vinculados con períodos de exhumación controlados por una tectónica de tipo compresiva (Galetto et al. 2021). El primer evento impulsó el enfriamiento-exhumación del basamento con el levantamiento de un amplio anticlinal de orientación N-S, mientras que el segundo es responsable de la inversión de la FMC y la deformación de la secuencia sedimentaria mesozoica. Nuevos datos termocronológicos provenientes del extremo norte de la Cordillera del Viento sugieren que el patrón de enfriamiento identificado en el área de Domuyo podría tener una impronta regional, extendiéndose en el ámbito de la Faja Plegada y Corrida de Chos Malal.Fil: Galetto, Antonella Tamara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Garcia, Victor Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zattin, Massimiliano. Università di Padova; ItaliaFil: Georgieva, Victoria. Universidad Austral de Chile; ChileFil: Bechis, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio. Universidad Nacional de Río Negro. Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio; ArgentinaFil: Sobel, Edward R.. Universitat Potsdam; AlemaniaFil: Glodny, Johannes. GFZ German Research Centre for Geosciences; AlemaniaFil: Caselli, Alberto Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; ArgentinaFil: Bordese, Sofia. LA - Te Andes S.A. Laboratorio de Termocronología de Los Andes; ArgentinaFil: Arzadún, Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. LA - Te Andes S.A. Laboratorio de Termocronología de Los Andes; ArgentinaFil: Becchio, Raul Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaXVIII Reunión de TectónicaSan LuisArgentinaAsociación Geológica ArgentinaUniversidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y NaturalesComisión de Tectónica de la Asociación Geológica Argentin

    The Post-Eocene Evolution of the Doruneh Fault Region (Central Iran): The Intraplate Response to the Reorganization of the Arabia-Eurasia Collision Zone

    Get PDF
    The Cenozoic deformation history of Central Iran has been dominantly accommodated by the activation of major intracontinental strike-slip fault zones, developed in the hinterland domain of the Arabia-Eurasia convergent margin. Few quantitative temporal and kinematic constraints are available from these strike-slip deformation zones, hampering a full assessment of the style and timing of intraplate deformation in Iran and the understanding of the possible linkage to the tectonic reorganization of the Zagros collisional zone. This study focuses on the region to the north of the active trace of the sinistral Doruneh Fault. By combing structural and low-temperature apatite fission track (AFT) and (U-Th)/He (AHe) thermochronology investigations, we provide new kinematic and temporal constraints to the deformation history of Central Iran. Our results document a post-Eocene polyphase tectonic evolution dominated by dextral strike-slip tectonics, whose activity is constrained since the early Miocene in response to an early, NW-SE oriented paleo-σ1 direction. A major phase of enhanced cooling/exhumation is constrained at the Miocene/Pliocene boundary, caused by a switch of the maximum paleo-σ1 direction to N-S. When integrated into the regional scenario, these data are framed into a new tectonic reconstruction for the Miocene-Quaternary time lapse, where strike-slip deformation in the intracontinental domain of Central Iran is interpreted as guided by the reorganization of the Zagros collisional zone in the transition from an immature to a mature stage of continental collision

    Seminario log geofisici

    No full text
    corecore