121 research outputs found

    Computer-aided phase shift mask design with reduced complexity

    Full text link

    Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050

    Get PDF
    Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US,2020US, 2020 US per capita, purchasing-power parity-adjusted USpercapita,andasaproportionofgrossdomesticproduct.Weusedvariousmodelstogeneratefuturehealthspendingto2050.FindingsIn2019,healthspendinggloballyreached per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached 8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or 1132(11191143)perperson.Spendingonhealthvariedwithinandacrossincomegroupsandgeographicalregions.Ofthistotal,1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 54.8billionindevelopmentassistanceforhealthwasdisbursedin2020.Ofthis,54.8 billion in development assistance for health was disbursed in 2020. Of this, 13.7 billion was targeted toward the COVID-19 health response. 12.3billionwasnewlycommittedand12.3 billion was newly committed and 1.4 billion was repurposed from existing health projects. 3.1billion(22.43.1 billion (22.4%) of the funds focused on country-level coordination and 2.4 billion (17.9%) was for supply chain and logistics. Only 714.4million(7.7714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia:a Multinational Point Prevalence Study of Hospitalised Patients

    Get PDF
    Pseudornonas aeruginosa is a challenging bacterium to treat due to its intrinsic resistance to the antibiotics used most frequently in patients with community-acquired pneumonia (CAP). Data about the global burden and risk factors associated with P. aeruginosa-CAP are limited. We assessed the multinational burden and specific risk factors associated with P. aeruginosa-CAP. We enrolled 3193 patients in 54 countries with confirmed diagnosis of CAP who underwent microbiological testing at admission. Prevalence was calculated according to the identification of P. aeruginosa. Logistic regression analysis was used to identify risk factors for antibiotic-susceptible and antibiotic-resistant P. aeruginosa-CAP. The prevalence of P. aeruginosa and antibiotic-resistant P. aeruginosa-CAP was 4.2% and 2.0%, respectively. The rate of P. aeruginosa CAP in patients with prior infection/colonisation due to P. aeruginosa and at least one of the three independently associated chronic lung diseases (i.e. tracheostomy, bronchiectasis and/or very severe chronic obstructive pulmonary disease) was 67%. In contrast, the rate of P. aeruginosa-CAP was 2% in patients without prior P. aeruginosa infection/colonisation and none of the selected chronic lung diseases. The multinational prevalence of P. aeruginosa-CAP is low. The risk factors identified in this study may guide healthcare professionals in deciding empirical antibiotic coverage for CAP patients

    Limits on the production of scalar leptoquarks from Z (0) decays at LEP

    Get PDF
    A search has been made for pairs and for single production of scalar leptoquarks of the first and second generations using a data sample of 392000 Z0 decays from the DELPHI detector at LEP 1. No signal was found and limits on the leptoquark mass, production cross section and branching ratio were set. A mass limit at 95% confidence level of 45.5 GeV/c2 was obtained for leptoquark pair production. The search for the production of a single leptoquark probed the mass region above this limit and its results exclude first and second generation leptoquarks D0 with masses below 65 GeV/c2 and 73 GeV/c2 respectively, at 95% confidence level, assuming that the D0lq Yukawa coupling alpha(lambda) is equal to the electromagnetic one. An upper limit is also given on the coupling alpha(lambda) as a function of the leptoquark mass m(D0)

    Exploiting Digital Micro-Mirror Devices for Ambient Light Communication

    No full text
    There is a growing interest in exploiting ambient light for wireless communication. This new research area has two key advantages: it utilizes a free portion of the spectrum and does not require modifications of the lighting infrastructure. Most existing designs, however, rely on a single type of optical surface at the transmitter: liquid crystal shutters (LCs). LCs have two inherent limitations, they cut the optical power in half, which affects the range; and they have slow time responses, which affects the data rate. We take a step back to provide a new perspective for ambient light communication with two novel contributions. First, we propose an optical model to understand the fundamental limits and opportunities of ambient light communication. Second, based on the insights of our analystical model, we build a novel platform, dubbed PhotoLink, that exploits a different type of optical surface: digital micro-mirror devices (DMDs). Considering the same scenario in terms of surface area and ambient light conditions, we benchmark the performance of PhotoLink using two types of receivers, one optimized for LCs and the other for DMDs. In both cases, PhotoLink outperforms the data rate of equivalent LC-transmitters by factors of 30 and 80: 30 kbps &amp; 80 kbps vs. 1 kbps, while consuming less than 50 mW. Even when compared to a more sophisticated multi-cell LC platform, which has a surface area that is 500 times bigger than ours, PhotoLink's data rate is 10-fold: 80 kbps vs. 8 kbps. To the best of our knowledge this is the first work providing an optical model for ambient light communication and breaking the 10 kbps barrier for these types of links.</p

    Exploiting Digital Micro-Mirror Devices for Ambient Light Communication

    No full text
    There is a growing interest in exploiting ambient light for wireless communication. This new research area has two key advantages: it utilizes a free portion of the spectrum and does not require modifications of the lighting infrastructure. Most existing designs, however, rely on a single type of optical surface at the transmitter: liquid crystal shutters (LCs). LCs have two inherent limitations, they cut the optical power in half, which affects the range; and they have slow time responses, which affects the data rate. We take a step back to provide a new perspective for ambient light communication with two novel contributions. First, we propose an optical model to understand the fundamental limits and opportunities of ambient light communication. Second, based on the insights of our analystical model, we build a novel platform, dubbed PhotoLink, that exploits a different type of optical surface: digital micro-mirror devices (DMDs). Considering the same scenario in terms of surface area and ambient light conditions, we benchmark the performance of PhotoLink using two types of receivers, one optimized for LCs and the other for DMDs. In both cases, PhotoLink outperforms the data rate of equivalent LC-transmitters by factors of 30 and 80: 30 kbps &amp; 80 kbps vs. 1 kbps, while consuming less than 50 mW. Even when compared to a more sophisticated multi-cell LC platform, which has a surface area that is 500 times bigger than ours, PhotoLink's data rate is 10-fold: 80 kbps vs. 8 kbps. To the best of our knowledge this is the first work providing an optical model for ambient light communication and breaking the 10 kbps barrier for these types of links.Embedded and Networked System
    corecore