1,261 research outputs found

    Effects of hydrostatic and uniaxial stress on the Schottky barrier heights of Ga-polarity and N-polarity n-GaN

    Get PDF
    We report measurements of the Schottky barrier heights of Ni/Au contacts on Ga-polarity and N-polarity n-GaN under hydrostatic pressure and applied in-plane uniaxial stress. Under hydrostatic pressure the two different polarities of GaN yield significantly different rates of Schottky barrier height increase with increasing pressure. Uniaxial stress parallel to the surface affects the Schottky barrier height only minimally. The observed changes in barrier height under stress are attributed to a combination of band structure and piezoelectric effects

    Bulk viscosity in 2SC quark matter

    Get PDF
    The bulk viscosity of three-flavor color-superconducting quark matter originating from the nonleptonic process u+s u+d is computed. It is assumed that up and down quarks form Cooper pairs while the strange quark remains unpaired (2SC phase). A general derivation of the rate of strangeness production is presented, involving contributions from a multitude of different subprocesses, including subprocesses that involve different numbers of gapped quarks as well as creation and annihilation of particles in the condensate. The rate is then used to compute the bulk viscosity as a function of the temperature, for an external oscillation frequency typical of a compact star r-mode. We find that, for temperatures far below the critical temperature T_c for 2SC pairing, the bulk viscosity of color-superconducting quark matter is suppressed relative to that of unpaired quark matter, but for T >~ 10^(-3) T_c the color-superconducting quark matter has a higher bulk viscosity. This is potentially relevant for the suppression of r-mode instabilities early in the life of a compact star.Comment: 18 pages + appendices (28 pages total), 8 figures; v3: corrected numerical error in the plots; 2SC bulk viscosity is now larger than unpaired bulk viscosity in a wider temperature rang

    Sinteza 2-(1H-indol-3-il)acetil-N-(supstituiranih fenil)hidrazinkarbotioamida i srodnih heterocikličkih spojeva te procjena njihovog antikonvulzivnog djelovanja i toksičnosti

    Get PDF
    A series of new 5-(1H-indol-3-yl)methyl-4-(substituted aryl)-2,4-dihydro-3H-1,2,4-triazole-3-thiones (4a-g), 5-(1H-indol-3-yl)methyl-N-(substituted aryl)-1,3,4-oxadiazol-2-amines (5a-g) and 5-(1H-indol-3-yl)methyl-N-(substituted aryl)-1,3,4-thiadiazol-2-amines (6a-g) were prepared by treating 2-(1H-indol-3-yl)acetyl-N-(substituted phenyl)hydrazine carbothioamides (3a-g) with suitable reagents. All the newly synthesized compounds were screened for their anticonvulsant activity in the MES model and were compared with the standard drugs phenytoin sodium and carbamazepine. Out of the twenty-one compounds studied, 4b, 4e, 4f, 5b, 5d, 5g, 6b, 6d and 6e showed comparable MES activity to phenytoin and carbamazepine after 0.5 h. Compound 5b showed to be more potent than carbamazepine after 4 h. Compounds 4a, 4c, 4d, 5a, 5c, 5e, 5f, 6f and 6g showed lower neurotoxicity than phenytoin.Reakcijom 2-(1H-indol-3-il)acetil-N-(supstituiranih fenil)hidrazinkarbotioamida (3a-g) s odgovarajućim reaktantom sintetizirana je serija novih 5-(1H-indol-3-il)metil-4-(supstituiranih aril)-2,4-dihidro-3H-1,2,4-triazol-3-tiona (4a-g), 5-(1H-indol-3-yl)metil-N-(supstituiranih aril)-1,3,4-oksadiazol-2-amina (5a-g) i 5-(1H-indol-3-il)metil-N-(supstituiranih aril)-1,3,4-tiadiazol-2-amina (6a-g). Ispitano je antikonvulzivno djelovanje sintetiziranih spojeva na MES modelu i uspoređeno s djelovanjem fenitoin natrija i karbamazepina. Spojevi 4b, 4e, 4f, 5b, 5d, 5g, 6b, 6d i 6e pokazali su MES djelovanje usporedivo s djelovanjem fenitoina i karbamazepina nakon 0,5 h, dok je spoj 5b nakon 4 sata imao snažnije djelovanje od karbamazepina. Osim toga, spojevi 4a, 4c, 4d, 5a, 5c, 5e, 5f, 6f i 6g su manje neurotoksični od fenitoina

    Improving Phase Change Memory Performance with Data Content Aware Access

    Full text link
    A prominent characteristic of write operation in Phase-Change Memory (PCM) is that its latency and energy are sensitive to the data to be written as well as the content that is overwritten. We observe that overwriting unknown memory content can incur significantly higher latency and energy compared to overwriting known all-zeros or all-ones content. This is because all-zeros or all-ones content is overwritten by programming the PCM cells only in one direction, i.e., using either SET or RESET operations, not both. In this paper, we propose data content aware PCM writes (DATACON), a new mechanism that reduces the latency and energy of PCM writes by redirecting these requests to overwrite memory locations containing all-zeros or all-ones. DATACON operates in three steps. First, it estimates how much a PCM write access would benefit from overwriting known content (e.g., all-zeros, or all-ones) by comprehensively considering the number of set bits in the data to be written, and the energy-latency trade-offs for SET and RESET operations in PCM. Second, it translates the write address to a physical address within memory that contains the best type of content to overwrite, and records this translation in a table for future accesses. We exploit data access locality in workloads to minimize the address translation overhead. Third, it re-initializes unused memory locations with known all-zeros or all-ones content in a manner that does not interfere with regular read and write accesses. DATACON overwrites unknown content only when it is absolutely necessary to do so. We evaluate DATACON with workloads from state-of-the-art machine learning applications, SPEC CPU2017, and NAS Parallel Benchmarks. Results demonstrate that DATACON significantly improves system performance and memory system energy consumption compared to the best of performance-oriented state-of-the-art techniques.Comment: 18 pages, 21 figures, accepted at ACM SIGPLAN International Symposium on Memory Management (ISMM

    Asteroseismology of the solar analogs 16 Cyg A & B from Kepler observations

    Get PDF
    The evolved solar-type stars 16 Cyg A & B have long been studied as solar analogs, yielding a glimpse into the future of our own Sun. The orbital period of the binary system is too long to provide meaningful dynamical constraints on the stellar properties, but asteroseismology can help because the stars are among the brightest in the Kepler field. We present an analysis of three months of nearly uninterrupted photometry of 16 Cyg A & B from the Kepler space telescope. We extract a total of 46 and 41 oscillation frequencies for the two components respectively, including a clear detection of octupole (l=3) modes in both stars. We derive the properties of each star independently using the Asteroseismic Modeling Portal, fitting the individual oscillation frequencies and other observational constraints simultaneously. We evaluate the systematic uncertainties from an ensemble of results generated by a variety of stellar evolution codes and fitting methods. The optimal models derived by fitting each component individually yield a common age (t=6.8+/-0.4 Gyr) and initial composition (Z_i=0.024+/-0.002, Y_i=0.25+/-0.01) within the uncertainties, as expected for the components of a binary system, bolstering our confidence in the reliability of asteroseismic techniques. The longer data sets that will ultimately become available will allow future studies of differential rotation, convection zone depths, and long-term changes due to stellar activity cycles.Comment: 6 pages, 2 figures, 2 tables, ApJ Letters (accepted

    Response timing in the lunge and target change in elite versus medium-level fencers.

    Get PDF
    The aim of the present work is to examine the differences between two groups of fencers with different levels of competition, elite and medium level. The timing parameters of the response reaction have been compared together with the kinetic variables which determine the sequence of segmented participation used during the lunge with a change in target during movement. A total of 30 male sword fencers participated, 13 elite and 17 medium level. Two force platforms recorded the horizontal component of the force and the start of the movement. One system filmed the movement in 3D, recording the spatial positions of 11 markers, while another system projected a mobile target over a screen. For synchronisation, an electronic signal enabled all the systems to be started simultaneously. Among the timing parameters of the reaction response, the choice reaction time (CRT) to the target change during the lunge was measured. The results revealed differences between the groups regarding the flight time, horizontal velocity at the end of the acceleration phase, and the length of the lunge, these being higher for the elite group, as well as other variables related to the temporal sequence of movement. No significant differences have been found in the simple reaction time or in CRT. According to the literature, the CRT appears to improve with sports practice, although this factor did not differentiate the elite from medium-level fencers. The coordination of fencing movements, that is, the right technique, constitutes a factor that differentiates elite fencers from medium-level ones

    Differentiation and neuro-protective properties of immortalized human tooth germ stem cells

    Get PDF
    Stem cells are considered to be promising therapeutic options in many neuro-degenerative diseases and injuries to the central nervous system, including brain ischemia and spinal cord trauma. Apart from the gold standard embryonic and mesenchymal origin, human tooth germ stem cells (hTGSCs) have also been shown to enjoy the characteristics of mesenchymal stem cells (MSCs) and the ability to differentiate into adipo-, chondro-, osteo- and neuro-genic cells, suggesting that they might serve as potential alternatives in the cellular therapy of various maladies. Immortalization of stem cells may be useful to avoid senescence of stem cells and to increase their proliferation potential without altering their natural characteristics. This study evaluated the expression of stem cell markers, surface antigens, differentiation capacity, and karyotype of hTGSCs that have been immortalized by human telomerase reverse transcriptase (hTERT) or simian vacuolating virus 40 (SV40) large T antigen. These undying cells were also evaluated for their neuro-protective potential using an in vitro SH-SY5Y neuro-blastoma model treated with hydrogen-peroxide or doxo-rubicin. Although hTGSC-SV40 showed abnormal karyotypes, our results suggest that hTGSC-hTERT preserve their MSC characteristics, differentiation capacity and normal karyotype, and they also possess high proliferation rate and neuro-protective effects even at great passage numbers. These peculiars indicate that hTGSC-hTERT could be used as a viable model for studying adipo-, osteo-, odonto- and neuro-genesis, as well as neuro-protection of MSCs, which may serve as a springboard for potentially utilizing dental waste material in cellular therapy. Š 2011 Springer Science+Business Media, LLC

    Features generated for computational splice-site prediction correspond to functional elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate selection of splice sites during the splicing of precursors to messenger RNA requires both relatively well-characterized signals at the splice sites and auxiliary signals in the adjacent exons and introns. We previously described a feature generation algorithm (FGA) that is capable of achieving high classification accuracy on human 3' splice sites. In this paper, we extend the splice-site prediction to 5' splice sites and explore the generated features for biologically meaningful splicing signals.</p> <p>Results</p> <p>We present examples from the observed features that correspond to known signals, both core signals (including the branch site and pyrimidine tract) and auxiliary signals (including GGG triplets and exon splicing enhancers). We present evidence that features identified by FGA include splicing signals not found by other methods.</p> <p>Conclusion</p> <p>Our generated features capture known biological signals in the expected sequence interval flanking splice sites. The method can be easily applied to other species and to similar classification problems, such as tissue-specific regulatory elements, polyadenylation sites, promoters, etc.</p

    COSMIC 2005

    Get PDF
    The Catalogue Of Somatic Mutations In Cancer (COSMIC) database and web site was developed to preserve somatic mutation data and share it with the community. Over the past 25 years, approximately 350 cancer genes have been identified, of which 311 are somatically mutated. COSMIC has been expanded and now holds data previously reported in the scientific literature for 28 known cancer genes. In addition, there is data from the systematic sequencing of 518 protein kinase genes. The total gene count in COSMIC stands at 538; 25 have a mutation frequency above 5% in one or more tumour type, no mutations were found in 333 genes and 180 are rarely mutated with frequencies <5% in any tumour set. The COSMIC web site has been expanded to give more views and summaries of the data and provide faster query routes and downloads. In addition, there is a new section describing mutations found through a screen of known cancer genes in 728 cancer cell lines including the NCI-60 set of cancer cell lines

    Standalone vertex nding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011
    • …
    corecore