4,089 research outputs found

    The light variability of the helium strong star HD 37776 as a result of its inhomogeneous elemental surface distribution

    Full text link
    We simulate light curves of the helium strong chemically peculiar star HD 37776 assuming that the observed periodic light variations originate as a result of inhomogeneous horizontal distribution of chemical elements on the surface of a rotating star. We show that chemical peculiarity influences the monochromatic radiative flux, mainly due to bound-free processes. Using the model of the distribution of silicon and helium on HD 37776 surface, derived from spectroscopy, we calculate a photometric map of the surface and consequently the uvby light curves of this star. Basically, the predicted light curves agree in shape and amplitude with the observed ones. We conclude that the basic properties of variability of this helium strong chemically peculiar star can be understood in terms of the model of spots with peculiar chemical composition.Comment: 11 pages, accepted for the publication in Astronomy & Astrophysic

    Outliers from the Mass--Metallicity Relation II: A Sample of Massive Metal-Poor Galaxies from SDSS

    Full text link
    We present a sample of 42 high-mass low-metallicity outliers from the mass--metallicity relation of star-forming galaxies. These galaxies have stellar masses that span log(M_*/M_sun) ~9.4 to 11.1 and are offset from the mass--metallicity relation by -0.3 to -0.85 dex in 12+log(O/H). In general, they are extremely blue, have high star formation rates for their masses, and are morphologically disturbed. Tidal interactions are expected to induce large-scale gas inflow to the galaxies' central regions, and we find that these galaxies' gas-phase oxygen abundances are consistent with large quantities of low-metallicity gas from large galactocentric radii diluting the central metal-rich gas. We conclude with implications for deducing gas-phase metallicities of individual galaxies based solely on their luminosities, specifically in the case of long gamma-ray burst host galaxies.Comment: Accepted for publication in ApJ; 11 pages, 11 figure

    Estudio de las abundancias químicas de dos estrellas CP magnéticas: HD 43819 y HD 147550

    Get PDF
    Utilizando material espectroscópico de alta dispersión, y modelos de atmósferas calculados con el programa ATLAS 9, cuyas predicciones se ajustan a la espectro-fotometría y a los perfiles de Hγ, se realiza un fine analysis de las estrellas CP magnéticas HD 43819 y HD 147550. Se discute especialmente la influencia del uso de las nuevas funciones de distribución que incluyen metales reforzados, en la determinación de parámetros atmosféricos y en la estimación de las abundancias químicas.Asociación Argentina de Astronomí

    Air quality and radiative forcing impacts of anthropogenic volatile organic compound emissions from ten world regions

    Get PDF
    Non-methane volatile organic compounds (NMVOCs) influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF) impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions decreases global annual average tropospheric methane and ozone by 36.6 ppbv and 3.3 Tg, respectively, and surface ozone by 0.67 ppbv. All regional reductions slow the production of peroxyacetyl nitrate (PAN), resulting in regional to intercontinental PAN decreases and regional NOx increases. These NOx increases drive tropospheric ozone increases nearby or downwind of source regions in the Southern Hemisphere (South America, Southeast Asia, Africa, and Australia). Some regions' NMVOC emissions contribute importantly to air pollution in other regions, such as East Asia, the Middle East, and Europe, whose impact on US surface ozone is 43%, 34%, and 34% of North America's impact. Global and regional NMVOC reductions produce widespread negative net RFs (cooling) across both hemispheres from tropospheric ozone and methane decreases, and regional warming and cooling from changes in tropospheric ozone and sulfate (via several oxidation pathways). The 100 yr and 20 yr global warming potentials (GWP100, GWP20) are 2.36 and 5.83 for the global reduction, and 0.079 to 6.05 and −1.13 to 18.9 among the 10 regions. The NMVOC RF and GWP estimates are generally lower than previously modeled estimates, due to the greater NMVOC/NOx emissions ratios simulated, which result in less sensitivity to NMVOC emissions changes and smaller global O3 burden responses, in addition to differences in the representation of NMVOCs and oxidation chemistry among models. Accounting for a fuller set of RF contributions may change the relative magnitude of each region's impacts. The large variability in the RF and GWP of NMVOCs among regions suggest that regionally specific metrics may be necessary to include NMVOCs in multi-gas climate trading schemes

    Pinning of a solid--liquid--vapour interface by stripes of obstacles

    Full text link
    We use a macroscopic Hamiltonian approach to study the pinning of a solid--liquid--vapour contact line on an array of equidistant stripes of obstacles perpendicular to the liquid. We propose an estimate of the density of pinning stripes for which collective pinning of the contact line happens. This estimate is shown to be in good agreement with Langevin equation simulation of the macroscopic Hamiltonian. Finally we introduce a 2--dimensional mean field theory which for small strength of the pinning stripes and for small capillary length gives an excellent description of the averaged height of the contact line.Comment: Plain tex, 12 pages, 3 figures available upon reques

    Mergers of luminous early-type galaxies in the local universe and gravitational wave background

    Full text link
    Supermassive black hole (SMBH) coalescence in galaxy mergers is believed to be one of the primary sources of very low frequency gravitational waves (GWs). Significant contribution of the GWs comes from mergers of massive galaxies with redshifts z<2. Very few previous studies gave the merger rate of massive galaxies. % We selected a large sample (1209) of close pairs of galaxies with projected separations 7<r_p<50 kpc from 87,889 luminous early-type galaxies (M_r<-21.5) from the Sloan Digital Sky Survey Data Release 6. These pairs constitute a complete volume-limited sample in the local universe (z<0.12). Using our newly developed technique, 249 mergers have been identified by searching for interaction features. From them, we found that the merger fraction of luminous early-type galaxies is 0.8%, and the merger rate in the local universe is % R_g=(1.0+/-0.4)*10^{-5} Mpc^{-3} Gyr^{-1}} % with an uncertainty mainly depending on the merging timescale. % We estimated the masses of SMBHs in the centers of merging galaxies based on their luminosities. We found that the chirp mass distribution of the SMBH binaries follows a power law with an index of -3.0+/-0.5 in the range 5*10^8--5*10^{9} M_{\odot}. % Using the SMBH population in the mergers and assuming that the SMBHs can be efficiently driven into the GW regime, we investigated the stochastic GW background in the frequency range 10^{-9}--10^{-7} Hz. We obtained the spectrum of the GW background of h_c(f)=10^{-15}(f/yr^{-1})^{-2/3}, which is one magnitude higher than that obtained by Jaffe & Backer in 2003, but consistent with those calculated from galaxy-formation models.Comment: 27 pages, 9 figures, Corrected typos and reference

    Surprising variations in the rotation of the chemically peculiar stars CU Virginis and V901 Orionis

    Get PDF
    CU Vir and V901 Ori belong among these few magnetic chemically peculiar stars whose rotation periods vary on timescales of decades. We aim to study the stability of the periods in CU Vir and V901 Ori using all accessible observational data containing phase information. We collected all available relevant archived observations supplemented with our new measurements of these stars and analysed the period variations of the stars using a novel method that allows for the combination of data of diverse sorts. We found that the shapes of their phase curves were constant, while the periods were changing. Both stars exhibit alternating intervals of rotational braking and acceleration. The rotation period of CU Vir was gradually shortening until the year 1968, when it reached its local minimum of 0.52067198 d. The period then started increasing, reaching its local maximum of 0.5207163 d in the year 2005. Since that time the rotation has begun to accelerate again. We also found much smaller period changes in CU Vir on a timescale of several years. The rotation period of V901 Ori was increasing for the past quarter-century, reaching a maximum of 1.538771 d in the year 2003, when the rotation period began to decrease. A theoretically unexpected alternating variability of rotation periods in these stars would remove the spin-down time paradox and brings a new insight into structure and evolution of magnetic upper-main-sequence stars.Comment: 5 pages, 3 figure

    Induced measures in the space of mixed quantum states

    Full text link
    We analyze several product measures in the space of mixed quantum states. In particular we study measures induced by the operation of partial tracing. The natural, rotationally invariant measure on the set of all pure states of a N x K composite system, induces a unique measure in the space of N x N mixed states (or in the space of K x K mixed states, if the reduction takes place with respect to the first subsystem). For K=N the induced measure is equal to the Hilbert-Schmidt measure, which is shown to coincide with the measure induced by singular values of non-Hermitian random Gaussian matrices pertaining to the Ginibre ensemble. We compute several averages with respect to this measure and show that the mean entanglement of N×NN \times N pure states behaves as lnN-1/2.Comment: 12 latex pages, 2 figures in epsf, submited to J. Phys. A. ver.3, some improvements and a few references adde

    The complex universe: recent observations and theoretical challenges

    Full text link
    The large scale distribution of galaxies in the universe displays a complex pattern of clusters, super-clusters, filaments and voids with sizes limited only by the boundaries of the available samples. A quantitative statistical characterization of these structures shows that galaxy distribution is inhomogeneous in these samples, being characterized by large-amplitude fluctuations of large spatial extension. Over a large range of scales, both the average conditional density and its variance show a nontrivial scaling behavior: at small scales, r<20 Mpc/h, the average (conditional) density scales as 1/r. At larger scales, the density depends only weakly (logarithmically) on the system size and density fluctuations follow the Gumbel distribution of extreme value statistics. These complex behaviors are different from what is expected in a homogeneous distribution with Gaussian fluctuations. The observed density inhomogeneities pose a fundamental challenge to the standard picture of cosmology but it also represent an important opportunity which points to new directions with respect to many cosmological puzzles. Indeed, the fact that matter distribution is not uniform, in the limited range of scales sampled by observations, rises the question of understanding how inhomogeneities affect the large-scale dynamics of the universe. We discuss several attempts which try to model inhomogeneities in cosmology, considering their effects with respect to the role and abundance of dark energy and dark matter.Comment: 30 pages, 10 figure

    Modelling of the ultraviolet and visual SED variability in the hot magnetic Ap star CU Vir

    Full text link
    The spectral energy distribution (SED) in chemically peculiar stars may be significantly affected by their abundance anomalies. The observed SED variations are usually assumed to be a result of inhomogeneous surface distribution of chemical elements, flux redistribution and stellar rotation. However, the direct evidence for this is still only scarce. We aim to identify the processes that determine the SED and its variability in the UV and visual spectral domains of the helium-weak star CU Vir. We used the model atmospheres to obtain the emergent flux and predict the rotationally modulated flux variability of the star. We show that most of the light variations in the vby filters of the Stromgren photometric system are a result of the uneven surface distribution of silicon, chromium, and iron. Our models are only able to explain a part of the variability in the u filter, however. The observed UV flux distribution is very well reproduced, and the models are able to explain most of the observed features in the UV light curve. The variability observed in the visible is merely a faint gleam of that in the UV. While the amplitude of the light curves reaches only several hundredths of magnitude in the visual domain, it reaches about 1 mag in the UV. The visual and UV light variability of CU Vir is caused by the flux redistribution from the far UV to near UV and visible regions, inhomogeneous distribution of the elements and stellar rotation. Bound-free transitions of silicon and bound-bound transitions of iron and chromium contribute the most to the flux redistribution. This mechanism can explain most of the rotationally modulated light variations in the filters centred on the Paschen continuum and on the UV continuum of the star CU Vir. However, another mechanism(s) has to be invoked to fully explain the observed light variations in the u filter and in the region 2000-2500 A.Comment: 14 pages, 13 figures, accepted for publication in Astronomy and Astrophysic
    corecore