393 research outputs found

    Comparative study of the electronic structures of the In and Sn/In2O3 (111) interfaces

    Full text link
    The electronic structure of the transparent semiconductor In2O3 has been studied by angle resolved photoemission spectroscopy upon deposition of metallic indium and also tin on the surface of the semiconductor. By deposition of metallic indium on In2O3 (111) single crystals, we detected the formation of a free-electron like band of effective mass (0.38+-0.05) m0. At low coverages, metallic In shifts the Fermi level of In2O3 to higher energies and a new electronic state forms at the metal/semiconductor interface. This state of two-dimensional character (2D-electron gas) is completely responsible for the electrical conduction in In2O3 (111) at the surface region and has a band dispersion, which does not correspond to the previously found surface accumulation layers in this material. Despite the similarity of the electronic properties of In and Sn, a larger downward banding was observed by Sn coverage, which was not accompanied by the appearance of the surface state.Comment: 5 pages, 3 figure

    Synthetic Fungal Strains for Solar System Exploration and Colonization

    Get PDF
    Solar system exploration and eventual colonization efforts are constrained by limits on the mass of material that can embark from Earth. Thus, creative use of the resources available in situ could reduce mission costs and extend the scope of such activities. To that end, we are developing synthetic fungal strains to produce specialized materials from the resources found throughout the solar system. A primary goal is to develop a suite of Saccharomyces cerevisiae strains to serve as generic production chassis for synthetic metabolic pathways. These strains must perform consistently upon challenge by unique conditions including exposure to microgravity, cosmic radiation, the rigors of launch and re-entry, and long-term stasis. Presently, we are establishing systematic datasets profiling epigenetic, transcriptional, translational and metabolic states of S. cerevisiae under relevant operating conditions. These will deepen our understanding of the physiological changes associated with space travel and enable rational engineering of optimal production strains

    Compensating vacancy defects in Sn- and Mg-doped In 2O3

    Get PDF
    MBE-grown Sn- and Mg-doped epitaxial In2O3 thin-film samples with varying doping concentrations have been measured using positron Doppler spectroscopy and compared to a bulk crystal reference. Samples were subjected to oxygen or vacuum annealing and the effect on vacancy type defects was studied. Results indicate that after oxygen annealing the samples are dominated by cation vacancies, the concentration of which changes with the amount of doping. In highly Sn-doped In2O3, however, these vacancies are not the main compensating acceptor. Vacuum annealing increases the size of vacancies in all samples, possibly by clustering them with oxygen vacancies.Peer reviewe

    No transfer of arousal from other’s eyes in Williams syndrome

    Get PDF
    Typically developing humans automatically synchronize their arousal levels, resulting in pupillary contagion, or spontaneous adaptation of pupil size to that of others. This phenomenon emerges in infancy and is believed to facilitate social interaction. Williams syndrome (WS) is a genetic condition characterized by a hyper-social personality and social interaction challenges. Pupillary contagion was examined in individuals with WS (n = 44), age-parallel-matched typically developing children and adults (n = 65), and infants (n = 79). Bayesian statistics were used. As a group, people with WS did not show pupillary contagion (Bayes factors supporting the null: 25–50) whereas control groups did. This suggests a very early emerging atypical developmental trajectory. In WS, higher pupillary contagion was associated with lower autistic symptoms of social communication. Diminished synchronization of arousal may explain why individuals with WS have social challenges, whereas synchronization of arousal is not a necessary correlate of high social motivation

    Quasifree (p, 2p) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength

    Get PDF
    Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B/LAND setup with incident beam energies in the range of 300-450 MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type OA(p,2p)NA-1 have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry

    Overview of the TCV tokamak experimental programme

    Get PDF
    The tokamak a configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T (e)/T (i) similar to 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with \u27small\u27 (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations
    • …
    corecore