225 research outputs found

    Developing and evaluating a coordinated person-based signal control paradigm in a corridor network

    Get PDF
    Connected Vehicles (CVs) provide both vehicle trajectory data and occupancy information to the junction controller, which make person-based signal controls to be possible by realizing the importance of reducing person delay. This study presents a coordinated person-based signal control algorithm (C-PBC), which has extended a previously developed approach from isolated junctions to multiple junctions. C-PBC incorporates vehicle information that is outside the CV communication range from the adjacent junction. It also updates data inputs for signal optimization algorithms based on formulated different arrival vehicle trajectory situations and coordinated data supplement algorithms. The developed algorithm has been evaluated using simulation with benchmarking signal control methods under a variety of scenarios involving CV penetration rates and predictive horizons. The results indicate that C-PBC is able to significantly improve person delay reduction when compared with fixed time control and vehicle-based control using CV data in 100% CV penetration rate under saturated flow conditions

    Adaptive Person Based Signal Control System in Isolated Connected Vehicle Junction

    Get PDF
    Urban person delay and congestion have becoming an increasing important issues. Connected vehicle (CV) technologies offer opportunities for managing urban traffic efficiently to reduce vehicle delays. The adaptive signal controls in CV environments are vehicle based controls, ignoring the importance of reducing person delay and improving person mobility in urban areas. This paper proposes an innovative Adaptive Person Based Signal Control Algorithm (APBSCA) to minimize person delay at isolated urbans. APBSCA is able to explore flexible phase combinations and stage sequences to find optimal signal timing solutions in certain prediction horizon. The vehicle in formation including positions, speeds and occupancy levels are collected through CV technology as data sources. A three-level dynamic programming approach is adopted in APBSCA to update the predictive departure time of every vehicle surrounding junctions, which is affected by network environments and signal decisions. APBSCA figures out optimal signal timing parameters that yield highest person delay saving values indicators at isolated junction over the prediction period and implement the corresponding signal timings. The results indicate that APBSCA have better results in reducing average person delay in vehicle in terms of high occupancy vehicles. APBSCA offers significantly average person delay reduction up to 55%. The proposed APBSCA indicates that person based controls have potential benefits in reducing person delay to consistent the future urban goals of improving perso

    Hybrid fluidic actuation for a foam-based soft actuator

    Get PDF
    Actuation means for soft robotic structures are manifold: despite actuation mechanisms such as tendon-driven manipulators or shape memory alloys, the majority of soft robotic actuators are fluidically actuated - either purely by positive or negative air pressure or by hydraulic actuation only. This paper presents the novel idea of employing hybrid fluidic - hydraulic and pneumatic - actuation for soft robotic systems. The concept and design of the hybrid actuation system as well as the fabrication of the soft actuator are presented: Polyvinyl Alcohol (PVA) foam is embedded inside a casted, reinforced silicone chamber. A hydraulic and pneumatic robotic syringe pump are connected to the base and top of the soft actuator. We found that a higher percentage of hydraulics resulted in a higher output force. Hydraulic actuation further is able to change displacements at a higher rate compared to pneumatic actuation. Changing between Hydraulic:Pneumatic (HP) ratios shows how stiffness properties of a soft actuator can be varied

    Computer Vision Based Identification of Dengue Mosquitoes from Images

    Get PDF
    The proposed work detects and identifies the Dengue mosquito from the images based on its xdescriptor values. Dengue mosquito is a carrier of dengue virus which causes the hemorrhagic fever. The image is identified as dengue or normal mosquito image. Further, the dengue mosquito image is identified for a male dengue mosquito or female dengue mosquito.  The descriptor values of size, stripes on legs, slender body and color are extracted. The accuracy of identification of mosquito and other insects is found to be 98%. The accuracy of identification of dengue mosquito and other mosquito is found to be 97%. Similarly, accuracy of male and female mosquitoes is found to be 98.5%

    Distributed Parallel Cooperative Coevolutionary Multi-Objective Large-Scale Immune Algorithm for Deployment of Wireless Sensor Networks

    Get PDF
    Using immune algorithms is generally a time-intensive process especially for problems with a large number of variables. In this paper, we propose a distributed parallel cooperative coevolutionary multi-objective large-scale immune algorithm that is implemented using the message passing interface (MPI). The proposed algorithm is composed of three layers: objective, group and individual layers. First, for each objective in the multi-objective problem to be addressed, a subpopulation is used for optimization, and an archive population is used to optimize all the objectives. Second, the large number of variables are divided into several groups. Finally, individual evaluations are allocated across many core processing units, and calculations are performed in parallel. Consequently, the computation time is greatly reduced. The proposed algorithm integrates the idea of immune algorithms, which tend to explore sparse areas in the objective space and use simulated binary crossover for mutation. The proposed algorithm is employed to optimize the 3D terrain deployment of a wireless sensor network, which is a self-organization network. In experiments, compared with several state-of-the-art multi-objective evolutionary algorithms the Cooperative Coevolutionary Generalized Differential Evolution 3, the Cooperative Multi-objective Differential Evolution and the Nondominated Sorting Genetic Algorithm III, the proposed algorithm addresses the deployment optimization problem efficiently and effectively

    The correlates of urinary albumin to creatinine ratio (ACR) in a high risk Australian Aboriginal community

    Get PDF
    Background: Albuminuria marks renal disease and cardiovascular risk. It was estimated to contribute 75% of the risk of all-cause natural death in one Aboriginal group. The urine albumin/creatinine ratio (ACR) is commonly used as an index of albuminuria. This study aims to examine the associations between demographic factors, anthropometric index, blood pressure, lipid-protein measurements and other biomarkers and albuminuria in a cross-sectional study in a high-risk Australian Aboriginal population. The models will be evaluated for albuminuria at or above the microalbuminuria threshold, and at or above the "overt albuminuria" threshold with the potential to distinguish associations they have in common and those that differ

    Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning

    Get PDF
    Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 0.71 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 50.2% exceed this threshold for suitability in at least one 5×5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify

    The global distribution of lymphatic filariasis, 2000–18: a geospatial analysis

    Get PDF
    Background Lymphatic filariasis is a neglected tropical disease that can cause permanent disability through disruption of the lymphatic system. This disease is caused by parasitic filarial worms that are transmitted by mosquitos. Mass drug administration (MDA) of antihelmintics is recommended by WHO to eliminate lymphatic filariasis as a public health problem. This study aims to produce the first geospatial estimates of the global prevalence of lymphatic filariasis infection over time, to quantify progress towards elimination, and to identify geographical variation in distribution of infection. Methods A global dataset of georeferenced surveyed locations was used to model annual 2000–18 lymphatic filariasis prevalence for 73 current or previously endemic countries. We applied Bayesian model-based geostatistics and time series methods to generate spatially continuous estimates of global all-age 2000–18 prevalence of lymphatic filariasis infection mapped at a resolution of 5 km2 and aggregated to estimate total number of individuals infected. Findings We used 14 927 datapoints to fit the geospatial models. An estimated 199 million total individuals (95% uncertainty interval 174–234 million) worldwide were infected with lymphatic filariasis in 2000, with totals for WHO regions ranging from 3·1 million (1·6–5·7 million) in the region of the Americas to 107 million (91–134 million) in the South-East Asia region. By 2018, an estimated 51 million individuals (43–63 million) were infected. Broad declines in prevalence are observed globally, but focal areas in Africa and southeast Asia remain less likely to have attained infection prevalence thresholds proposed to achieve local elimination. Interpretation Although the prevalence of lymphatic filariasis infection has declined since 2000, MDA is still necessary across large populations in Africa and Asia. Our mapped estimates can be used to identify areas where the probability of meeting infection thresholds is low, and when coupled with large uncertainty in the predictions, indicate additional data collection or intervention might be warranted before MDA programmes cease

    The overlapping burden of the three leading causes of disability and death in sub-Saharan African children

    Get PDF
    Despite substantial declines since 2000, lower respiratory infections (LRIs), diarrhoeal diseases, and malaria remain among the leading causes of nonfatal and fatal disease burden for children under 5 years of age (under 5), primarily in sub-Saharan Africa (SSA). The spatial burden of each of these diseases has been estimated subnationally across SSA, yet no prior analyses have examined the pattern of their combined burden. Here we synthesise subnational estimates of the burden of LRIs, diarrhoea, and malaria in children under-5 from 2000 to 2017 for 43 sub-Saharan countries. Some units faced a relatively equal burden from each of the three diseases, while others had one or two dominant sources of unit-level burden, with no consistent pattern geographically across the entire subcontinent. Using a subnational counterfactual analysis, we show that nearly 300 million DALYs could have been averted since 2000 by raising all units to their national average. Our findings are directly relevant for decision-makers in determining which and targeting where the most appropriate interventions are for increasing child survival. © 2022, The Author(s).Funding text 1: This work was primarily supported by grant OPP1132415 from the Bill & Melinda Gates Foundation. ; Funding text 2: This study was funded by the Bill & Melinda Gates Foundation. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication. The non-consortium authors have no competing interests . Competing interests for consortium authors is as follows: Robert Ancuceanu reports receiving consultancy or speaker feeds from UCB, Sandoz, Abbvie, Zentiva, Teva, Laropharm, CEGEDIM, Angelini, Biessen Pharma, Hofigal, AstraZeneca, and Stada. Jacek Jerzy Jozwiak reports personal fees from Amgen, ALAB Laboratories, Teva, Synexus, Boehringer Ingelheim, and Zentiva, all outside the submitted work. Kewal Krishan reports non-financial support from UGC Centre of Advanced Study, CAS II, Department of Anthropology, Panjab University, Chandigarh, India, outside the submitted work. Walter Mendoza is a Program Analyst in Population and Development at the United Nations Population Fund-UNFPA Country Office in Peru, which does not necessarily endorse or support these findings. Maarten J Postma reports grants and personal fees from MSD, GSK, Pfizer, Boehringer Ingelheim, Novavax, BMS, Seqirus, Astra Zeneca, Sanofi, IQVIA, grants from Bayer, BioMerieux, WHO, EU, FIND, Antilope, DIKTI, LPDP, Budi, personal fees from Novartis, Quintiles, Pharmerit, owning stock options in Health-Ecore and PAG Ltd, and being advisor to Asc Academics, all outside the submitted work. Jasviner A Singh reports personal fees from Crealta/Horizon, Medisys, Fidia, UBM LLC, Trio health, Medscape, WebMD, Clinical Care options, Clearview healthcare partners, Putnam associates, Focus forward, Navigant consulting, Spherix, Practice Point communications, the National Institutes of Health, the American College of Rheumatology, and Simply Speaking, owning stock options in Amarin, Viking, Moderna, Vaxart pharmaceuticals and Charlotte’s Web Holdings, being a member of FDA Arthritis Advisory Committee, the steering committee of OMERACT, an international organization that develops measures for clinical trials and receives arm’s length funding from 12 pharmaceutical companies, and the Veterans Affairs Rheumatology Field Advisory Committee, and acting as Editor and Director of the UAB Cochrane Musculoskeletal Group Satellite Center on Network Meta-analysis, all outside the submitted work. Era Upadhyay has a patent A system and method of reusable filters for anti-pollution mask pending, and a patent A system and method for electricity generation through crop stubble by using microbial fuel cells pending
    corecore