58 research outputs found

    Harmonizing across datasets to improve the transferability of drug combination prediction

    Get PDF
    Combination treatment has multiple advantages over traditional monotherapy in clinics, thus becoming a target of interest for many high-throughput screening (HTS) studies, which enables the development of machine learning models predicting the response of new drug combinations. However, most existing models have been tested only within a single study, and these models cannot generalize across different datasets due to significantly variable experimental settings. Here, we thoroughly assessed the transferability issue of single-study-derived models on new datasets. More importantly, we propose a method to overcome the experimental variability by harmonizing dose-response curves of different studies. Our method improves the prediction performance of machine learning models by 184% and 1367% compared to the baseline models in intra-study and inter-study predictions, respectively, and shows consistent improvement in multiple cross-validation settings. Our study addresses the crucial question of the transferability in drug combination predictions, which is fundamental for such models to be extrapolated to new drug combination discovery and clinical applications that are de facto different datasets.A machine learning-based method improves the transferability of drug combination predictions across datasets from studies with variable experimental settings, such as the number of doses and dose ranges tested.Peer reviewe

    Non-destructive testing research on the surface damage faced by the Shanhaiguan Great Wall based on machine learning

    Get PDF
    The Shanhaiguan Great Wall is a section of the Great Wall of the Ming Dynasty, which is a UNESCO World Heritage Site. Both sides of its basic structure are composed of rammed earth and gray bricks. The surface gray bricks sustain damage from environmental factors, resulting in a decline in their structural quality and even a threat to their safety. Traditional surface damage detection methods rely primarily on manual identification or manual identification following unmanned aerial vehicle (UAV) aerial photography, which is labor-intensive. This paper applies the YOLOv4 machine learning model to the gray surface bricks of the Plain Great Wall of Shanhaiguan as an illustration. By slicing and labeling the photos, creating a training set, and then training the model, the proposed approach automatically detects four types of damage (chalking, plants, ubiquinol, and cracking) on the surface of the Great Wall. This eliminates the need to expend costly human resources for manual identification following aerial photography, thereby accelerating the work. Through research, it is found that 1) compared with manual detection, this method can quickly and efficiently monitor a large number of wall samples in a short period of time and improve the efficiency of brick wall detection in ancient buildings. 2) Compared with previous approaches, the accuracy of the current method is improved. The identifiable types are increased to include chalking and ubiquinol, and the accuracy rate increases by 0.17% (from 85.70% before to 85.87% now). 3) This method can quickly identify the damaged parts of the wall without damaging the appearance of the historical building structure, enabling timely repair measures

    Prostaglandin E1 Alleviates Cognitive Dysfunction in Chronic Cerebral Hypoperfusion Rats by Improving Hemodynamics

    Get PDF
    Compensatory vascular mechanisms can restore cerebral blood flow (CBF) but fail to protect against chronic cerebral hypoperfusion (CCH)-mediated neuronal damage and cognitive impairment. Prostaglandin E1 (PGE1) is known as a vasodilator to protect against ischemic injury in animal models, but its protective role in CCH remains unclear. To determine the effect of PGE1 on cerebral hemodynamics and cognitive functions in CCH, bilateral common carotid artery occlusion (BCCAO) was used to mimic CCH in rats, which were subsequently intravenously injected with PGE1 daily for 2 weeks. Magnetic resonance imaging, immunofluorescence staining and Morris water maze (MWM) were used to evaluate CBF, angiogenesis, and cognitive functions, respectively. We found that PGE1 treatment significantly restored CBF by enhancing vertebral artery dilation. In addition, PGE1 treatment increased the number of microvascular endothelial cells and neuronal cells in the hippocampus, and decreased the numbers of astrocyte and apoptotic cells. In the MWM test, we further showed that the escape latency of CCH rats was significantly reduced after PGE1 treatment. Our results suggest that PGE1 ameliorates cognitive dysfunction in CCH rats by enhancing CBF recovery, sustaining angiogenesis, and reducing astrocyte activation and neuronal loss

    Rapidity, azimuthal, and multiplicity dependence of mean transverse momentum and transverse momentum correlations in π+p\pi^{+}p and K+pK^{+}p collisions in s\sqrt{s}=22 GeV

    Get PDF
    Rapidity, azimuthal and multiplicity dependence of mean transverse momentum and transverse momentum correlations of charged particles is studied in pi/sup positive and K/sup positive collisions at 250 GeV/c incident beam momentum. For the first time, it is found that the rapidity dependence of the two-particle transverse momentum correlation is different from that of the mean transverse momentum, but both have similar multiplicity dependence. In particular, the transverse momentum correlations are boost invariant. This is similar to the recently found boost invariance of the charge balance function. A strong azimuthal dependence of the transverse momentum correlations originates from the constraint of energy-momentum conservation. The results are compared with those from the PYTHIA Monte Carlo generator. The similarities to and differences with the results from current heavy ion experiments are discussed

    Prediction of overall survival for patients with metastatic castration-resistant prostate cancer : development of a prognostic model through a crowdsourced challenge with open clinical trial data

    Get PDF
    Background Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-profit initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate cancer but also engage a community of international data scientists to study this disease. Methods Data from the comparator arms of four phase 3 clinical trials in first-line metastatic castration-resistant prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to be used as training data to predict the outcome of interest-namely, overall survival. Clinical data were also released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further validation was done using data from a fifth trial-ENTHUSE M1-in which 266 patients with metastatic castration-resistant prostate cancer were treated with placebo alone. Findings 50 independent methods were developed to predict overall survival and were evaluated through the DREAM challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely identified predictive interaction effects with immune biomarkers and markers of hepatic and renal function. Overall, ePCR outperformed all other methods (iAUC 0.791; Bayes factor >5) and surpassed the reference model (iAUC 0.743; Bayes factor >20). Both the ePCR model and reference models stratified patients in the ENTHUSE 33 trial into high-risk and low-risk groups with significantly different overall survival (ePCR: hazard ratio 3.32, 95% CI 2.39-4.62, p Interpretation Novel prognostic factors were delineated, and the assessment of 50 methods developed by independent international teams establishes a benchmark for development of methods in the future. The results of this effort show that data-sharing, when combined with a crowdsourced challenge, is a robust and powerful framework to develop new prognostic models in advanced prostate cancer.Peer reviewe

    A community challenge to evaluate RNA-seq, fusion detection, and isoform quantification methods for cancer discovery

    Get PDF
    The accurate identification and quantitation of RNA isoforms present in the cancer transcriptome is key for analyses ranging from the inference of the impacts of somatic variants to pathway analysis to biomarker development and subtype discovery. The ICGC-TCGA DREAM Somatic Mutation Calling in RNA (SMC-RNA) challenge was a crowd-sourced effort to benchmark methods for RNA isoform quantification and fusion detection from bulk cancer RNA sequencing (RNA-seq) data. It concluded in 2018 with a comparison of 77 fusion detection entries and 65 isoform quantification entries on 51 synthetic tumors and 32 cell lines with spiked-in fusion constructs. We report the entries used to build this benchmark, the leaderboard results, and the experimental features associated with the accurate prediction of RNA species. This challenge required submissions to be in the form of containerized workflows, meaning each of the entries described is easily reusable through CWL and Docker containers at https://github.com/SMC-RNA-challenge. A record of this paper's transparent peer review process is included in the supplemental information

    Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis

    Get PDF
    Correction: vol 7, 13205, 2016, doi:10.1038/ncomms13205Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in Bone-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h(2) = 0.18, P value = 0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data.Peer reviewe

    An Ant Colony Optimization for Grid Task Scheduling with Multiple QoS Dimensions

    No full text
    International audienc

    Streamline Simulation and Analysis of Pedestrian Weaving Flow in Large Passenger Terminal

    No full text
    A new concept called the extended weaving area is proposed to relieve the conflicts and clogging caused by pedestrian weaving in both time and space in large passenger terminal. The cellular automaton model that considers pedestrian walking habits based on the floor field is adopted. Numerical simulations are carried out in MATLAB environment to explore the relationship between the emptying time and bottleneck setting when four groups of pedestrians walk to four exits through the weaving areas with different settings. It is found that, by using improved extended weaving area settings, the stress of the weaving area could be relieved in both time and space; thus the efficiency of pedestrians passing could be improved. Based on the simulation, the threshold of single bottleneck width in the extended weaving area is also given in this research

    Error compensation method of mine-used drilling trajectory measurement system

    No full text
    The paper introduced structure and measuring principle of drilling trajectory measurement system, and elaborated error sources and compensation method in details from three aspects including sensor itself, environmental conditions and sensor installation. The simulation of the physical scene of horizontal directional drilling, and analysis of attitude angle before and after the error compensation show that making appropriate error compensation for different error source can improve the accuracy of attitude angle measurement
    • …
    corecore