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Prediction of overall survival for patients with metastatic 
castration-resistant prostate cancer: development of a 
prognostic model through a crowdsourced challenge with 
open clinical trial data
Justin Guinney*, Tao Wang*, Teemu D Laajala*, Kimberly Kanigel Winner, J Christopher Bare, Elias Chaibub Neto, Suleiman A Khan, 
Gopal Peddinti, Antti Airola, Tapio Pahikkala, Tuomas Mirtti, Thomas Yu, Brian M Bot, Liji Shen, Kald Abdallah, Thea Norman, Stephen Friend, 
Gustavo Stolovitzky, Howard Soule, Christopher J Sweeney, Charles J Ryan, Howard I Scher, Oliver Sartor, Yang Xie†, Tero Aittokallio†, 
Fang Liz Zhou†, James C Costello†, and the Prostate Cancer Challenge DREAM Community‡

Summary
Background Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential 
to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-
profi t initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-
data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only 
identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate 
cancer but also engage a community of international data scientists to study this disease.

Methods Data from the comparator arms of four phase 3 clinical trials in fi rst-line metastatic castration-resistant 
prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and 
prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the 
MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE 
trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more 
than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, 
lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to 
be used as training data to predict the outcome of interest—namely, overall survival. Clinical data were also 
released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from 
the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated 
using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical 
variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further 
validation was done using data from a fi fth trial—ENTHUSE M1—in which 266 patients with metastatic 
castration-resistant prostate cancer were treated with placebo alone.

Findings 50 independent methods were developed to predict overall survival and were evaluated through the DREAM 
challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely 
identifi ed predictive interaction eff ects with immune biomarkers and markers of hepatic and renal function. Overall, 
ePCR outperformed all other methods (iAUC 0·791; Bayes factor >5) and surpassed the reference model (iAUC 0·743; 
Bayes factor >20). Both the ePCR model and reference models stratifi ed patients in the ENTHUSE 33 trial into high-
risk and low-risk groups with signifi cantly diff erent overall survival (ePCR: hazard ratio 3·32, 95% CI 2·39–4·62, 
p<0·0001; reference model: 2·56, 1·85–3·53, p<0·0001). The new model was validated further on the ENTHUSE M1 
cohort with similarly high performance (iAUC 0·768). Meta-analysis across all methods confi rmed previously 
identifi ed predictive clinical variables and revealed aspartate aminotransferase as an important, albeit previously 
under-reported, prognostic biomarker.

Interpretation Novel prognostic factors were delineated, and the assessment of 50 methods developed by independent 
international teams establishes a benchmark for development of methods in the future. The results of this eff ort 
show that data-sharing, when combined with a crowdsourced challenge, is a robust and powerful framework to 
develop new prognostic models in advanced prostate cancer.
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 Introduction
Prostate cancer is the most common cancer among men 
in high-income countries and ranks third in terms of 

mortality after lung cancer and colorectal cancer.1 
Of more than two million men diagnosed with prostate 
cancer in the USA over the past 10 years, roughly 10% 
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presented with metastatic disease. For these men, the 
mainstay of treatment is androgen deprivation therapy, 
with a high proportion of response. However, responses 
are not durable, and nearly all tumours eventually prog-
ress to the lethal metastatic castration-resistant state. 
Although substantial improvements in outcome for men 
with metastatic castration-resistant prostate cancer have 
been achieved after approval of next-generation hormonal 
agents, an immunotherapeutic drug, a radiopharma-
ceutical agent, and a cytotoxic drug,2–10 how best to deploy 
these treatments has not been ascertained. Elucidation of 
variables associated with patients’ outcomes independent 
of treatment will facilitate the design of future trials by 
homogenising risk, thus enabling clinical trial questions 
to be answered more rapidly because smaller sample 
sizes will be needed.

Prognostic models in metastatic castration-resistant 
prostate cancer have been described11–13 using baseline 
variables from independent cohort studies. A 2014 
prognostic model for metastatic castration-resistant 
prostate cancer 14 included eight clinical factors predictive 
of overall survival: Eastern Cooperative Oncology 
Group (ECOG) performance status; disease site; use of 
opioid analgesics; lactate dehydrogenase; albumin; 
haemoglobin; prostate-specifi c antigen; and alkaline 
phosphatase. Can innovative models with improved 
performance be developed through a systematic search 
using data-driven approaches while providing insights 

into biological aspects of the disease that aff ect patients’ 
outcomes? An example of a novel clinical factor that is 
underexplored in contemporary prognostic model 
development is interaction eff ects between clinical 
variables, even though interactions between genetic 
variants are used widely and known to improve genetic-
based risk prediction and patients’ stratifi cation.15,16

Here, we present results from the prostate cancer 
DREAM (Dialogue for Reverse Engineering Assessments 
and Methods) challenge—an open-data, crowdsourced 
challenge in metastatic castration-resistant prostate 
cancer. A major contribution to this eff ort was removal of 
privacy and legal barriers associated with open access to 
phase 3 clinical trial data17 by Project Data Sphere—a 
not-for-profi t initiative of the CEO Roundtable on 
Cancer’s Life Sciences Consortium that broadly shares 
oncology clinical trial data with researchers. The challenge 
was designed to accomplish two goals. First, we aimed to 
leverage open clinical trial data, enabling a community-
based approach to identify the best-performing prognostic 
model in a rigorous and unbiased manner. Second, 
participating teams aimed to develop predictive models 
to both validate previously characterised predictive 
clinical variables and discover new prognostic features. 
Consistent with the mission of DREAM, all challenge 
data, results, and method descriptions from participating 
teams are available publicly through the open-access 
Synapse platform.

Research in context

Evidence before this study
We searched PubMed between January, 2012, and July, 2015, 
with the terms “prognosis”, “overall survival”, “mCRPC”, and 
“docetaxel”. Our search yielded a 2014 study in which an 
updated prognostic model was described for metastatic 
castration-resistant prostate cancer that had been developed 
from the CALGB-90401 study (a randomised, double-blind, 
phase 3 clinical trial) and validated with data from the phase 3 
ENTHUSE 33 trial. The study focused on a subset of clinical 
variables using datasets that were not in the public domain. 
Leveraging the wealth of data already generated from clinical 
trials is challenging on several fronts, but is complicated in 
particular by data access.

Added value of this study
Project Data Sphere is an independent not-for-profi t initiative 
that aims to provide open access to historical patient-level data. 
The prostate cancer DREAM (Dialogue for Reverse Engineering 
Assessments and Methods) challenge is an open-data, 
crowdsourced competition to develop and assess prognostic 
models in metastatic castration-resistant prostate cancer. Using 
data from the comparator arms of four phase 3 clinical trials of 
chemotherapy-naive patients with metastatic 
castration-resistant prostate cancer, 50 independent teams—
a diverse group of experts including biostatisticians, computer 

scientists, and clinical experts—developed prognostic models for 
the DREAM challenge, representing, to the best of our 
knowledge, the most comprehensive set of benchmarked 
models to date. The best-performing model was based on an 
ensemble of penalised Cox regression models that judged the 
prognostic value of interactions between predictor covariates 
and substantially outperformed the 2014 model. Strong support 
was provided for previously identifi ed prognostic variables in the 
50 models, and additional important variables were identifi ed 
along with novel interactions between covariates. Data are 
available publicly through the Project Data Sphere initiative, and 
all method predictions and code are available for download 
through the Sage Bionetworks Synapse platform.

Implications of all the available evidence
Clinical trial data-sharing is both feasible and useful, and the 
DREAM challenge is an appropriate vehicle on which to build 
and rigorously assess prognostic or predictive models quickly, 
openly, and robustly. We established a new prognostic 
benchmark in metastatic castration-resistant prostate cancer, 
with applications in trial design and guidance for clinicians and 
patients. Robust and accurate prognostic predictors can be used 
to homogenise risk in clinical trials of metastatic 
castration-resistant prostate cancer and enable smaller trials for 
assessment of treatment eff ects. 

For more on DREAM challenges 
see http://dreamchallenges.org

For more on Project Data 
Sphere see 
http://www.projectdatasphere.
org

For more on the CEO 
Roundtable on Cancer’s Life 
Sciences Consortium see 
http://ceo-lsc.org

To access data via the Synapse 
platform see 
https://www.synapse.org/
ProstateCancerChallenge
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Methods
Trial selection
In April 2014, the DREAM challenge organising team 
reviewed all existing and incoming prostate cancer trial 
datasets (comparator arm only) in Project Data Sphere 
and selected four trials, which were the source of 
training and validation datasets for the DREAM 
challenge—ASCENT2,18 MAINSAIL,19 VENICE,20 and 
ENTHUSE 33.21 All four trials were randomised phase 3 
clinical trials in which the comparator arm consisted of a 
docetaxel regimen and overall survival was the primary 
endpoint. These four trials also had similar inclusion 
and exclusion criteria: eligible patients were aged 
18 years and older, had progressive metastatic castration-
resistant prostate cancer, were chemotherapy-naive, and 
had an ECOG performance status of 0–2. Further details 
of inclusion and exclusion criteria for each trial are 
provided in the appendix (p 3). The patient-level trial 
datasets were deidentifi ed by data providers and made 
available for the DREAM challenge through Project Data 
Sphere. No institutional review board approval was 
needed to access data.

Patient populations
We compiled training datasets from the comparator 
arms of ASCENT2, MAINSAIL, and VENICE. ASCENT218 
is a randomised open-label study assessing DN-101 in 
combination with docetaxel. Patients with metastatic 
castration-resistant prostate cancer were randomly 
assigned either docetaxel and prednisone (comparator 

arm) or docetaxel and DN-101, stratifi ed by geographical 
region and ECOG performance status. MAINSAIL19 is a 
randomised double-blind study to assess effi  cacy and 
safety of docetaxel and prednisone with or without 
lenalidomide in patients with metastatic castration-
resistant prostate cancer. Participants were randomly 
assigned to either docetaxel, prednisone, and placebo 
(comparator arm) or lenalidomide, docetaxel, and 
prednisone. Stratifi cation of patients in MAINSAIL was 
done based on ECOG performance status (0–1 vs 2), 
geographical region (USA and Canada vs Europe and 
Australia vs rest of world), and type of disease progression 
after hormonal treatment (rising prostate-specifi c 
antigen only vs tumour progression). VENICE20 is a 
randomised double-blind study comparing the effi  cacy 
and safety of afl ibercept versus placebo, in which patients 
with metastatic castration-resistant prostate cancer were 
randomly assigned either docetaxel, prednisone or 
prednisolone, and placebo (comparator arm) or docetaxel, 
prednisone or prednisolone, and afl ibercept. Participants 
were stratifi ed by baseline ECOG performance status 
(0–1 vs 2). The validation dataset was from the 
ENTHUSE 33 trial,21 a double-blind study in which 
patients with metastatic castration-resistant prostate 
cancer were randomly allocated (1:1) either docetaxel and 
placebo (comparator arm) or docetaxel with zibotentan, 
stratifi ed by centre.

Data curation
The original datasets from Project Data Sphere contained 
patient-level raw tables that conformed to either Study 
Data Tabulation Model (SDTM) standards or company-
specifi c clinical database standards. To optimise use of 
these data for the DREAM challenge, we compiled the 
four sets of trial data into a set of fi ve standardised raw 
event-level tables, meaning all four clinical trials were 
combined into the same tables based on laboratory 
values, medical history, lesion sites, previous treatments, 
and vital signs. Including patients’ demographic inform-
ation, these tables presented most measurements made 
for the patient in that category. To summarise these data 
on a per-patient level, we created a core table, distilling 
the raw event-level tables and patients’ demographics 
into 129 clinically defi ned baseline and outcome 
variables. Full details of the data curation process are 
provided in the appendix (pp 3, 4).

We supplied participating teams with the full set of 
baseline and raw variables from the core and raw event-
level tables. We encouraged challenge participants to 
derive additional baseline clinical variables from the 
fi ve standardised raw event-level tables for modeling. 
We also provided teams with outcome variables for the 
ASCENT2, MAINSAIL, and VENICE trials, but we did 
not release the outcome variables for the ENTHUSE 33 
trial because they would serve to independently evaluate 
the performance of models. The primary endpoint used 
for model development was overall survival, defi ned as 

Figure 1: Study design
Data were acquired from Project Data Sphere and curated centrally by the organising team to provide a 
harmonised dataset across the four studies. Three studies were provided as training data (ASCENT2, MAINSAIL, 
and VENICE) and the fourth (ENTHUSE 33) was the validation dataset. Teams submitted risk scores for 
ENTHUSE 33, then their predictions were scored and ranked using an integrated time-dependent area under the 
curve (AUC) metric.

Final team ranked performance

Ti
m

e-
de

pe
nd

en
t A

UC

6 12 18 24 30

0·9

0·8

0·7

0·6

0·5

Time (months)

Four phase 3 clinical trials

Project Data Sphere

Centralised standardisation
of clinical variables

ASCENT 2
(476 patients)

MAINSAIL
(526 patients)

VENICE
(598 patients)

ENTHUSE 33
(470 patients)

Validation data

Team risk predictions

Scoring:
time-dependent
AUC (6–30 months)

50 teams
...

Training data (1600 patients)



Articles

www.thelancet.com/oncology   Vol 18   January 2017 135

the time from date of randomisation to the date of death 
from any cause.

We did principal component analysis to investigate 
systematic similarities or diff erences between the 
four clinical trials, using either all available variables or 
binary variables only. We visualised the principal com-
ponent analysis by plotting the fi rst principal component 
against the second principal component for all patients.

Further validation
After the DREAM challenge was completed using data 
from ENTHUSE 33 for method evaluation, we further 
validated the top-performing and reference models with 
data from a fi fth trial, ENTHUSE M1,22 to assess whether 
the top-performing model could be used to stratify risk 
for patients with metastatic castration-resistant prostate 
cancer who received placebo alone and no docetaxel. 
ENTHUSE M1 is a randomised double-blind study to 
assess the effi  cacy and safety of 10 mg zibotentan in 
patients with metastatic castration-resistant prostate 
cancer (specifi cally, bone metastasis). By contrast with 

ENTHUSE 33, the ENTHUSE M1 trial included a 
comparator arm of placebo alone. Patients were randomly 
allocated (1:1) either zibotentan or placebo and were 
stratifi ed by centre. The inclusion and exclusion criteria 
were similar to those used for ENTHUSE 33 except that 
patients in ENTHUSE M1 were pain free or mildly 
symptomatic. To be consistent for validation, curation of 
ENTHUSE M1 data followed the same process as was 
done for ASCENT2, MAINSAIL, VENICE, and 
ENTHUSE 33, resulting in a core table and fi ve raw 
event-level tables.

Challenge procedures
The DREAM challenge was hosted and fully managed on 
Synapse, a cloud-based platform for collaborative scientifi c 
data analysis, through which all model predictions were 
submitted. The challenge was run in two phases 
(appendix pp 4, 17). First, teams were allowed to train and 
test their models in an open testing leaderboard phase. 
Second, teams were permitted one last submission to the 
fi nal scoring phase, after which teams were scored and 

ASCENT2 (n=476) MAINSAIL (n=526) VENICE (n=598) ENTHUSE 33 (n=470) ENTHUSE M1 (n=266)

Age (years)

18–64 111 (23%) 171 (33%) 219 (37%) 160 (34%) 58 (22%)

65–74 211 (44%) 246 (47%) 254 (42%) 217 (46%) 111 (42%)

≥75 154 (32%) 109 (21%) 125 (21%) 93 (20%) 97 (36%)

ECOG performance score

0 220 (46%) 257 (49%) 280 (47%) 247 (53%) 196 (74%)

1 234 (49%) 247 (47%) 291 (49%) 223 (47%) 70 (26%)

2 22 (5%) 20 (4%) 27 (5%) 0 (0%) 0 (0%)

3 0 (0%) 1 (<1%) 0 (0%) 0 (0%) 0 (0%)

Missing 0 (0%) 1 (<1%) 0 (0%) 0 (0%) 0 (0%)

Metastasis

Liver 5 (1%) 58 (11%) 60 (10%) 64 (14%) 12 (5%)

Bone 345 (72%) 439 (83%) 529 (88%) 470 (100%) 266 (100%)

Lungs 8 (2%) 74 (14%) 88 (15%) 56 (12%) 13 (5%)

Lymph nodes 163 (34%) 298 (57%) 323 (54%) 208 (44%) 80 (30%)

Analgesic use

No 338 (71%) 347 (66%) 419 (70%) 339 (72%) 256 (96%)

Yes 138 (29%) 179 (34%) 179 (30%) 131 (28%) 10 (4%)

Lactate dehydrogenase (U/L) 202 (176–250) 210 (174–267) NA 213 (181–287) 188 (170–219)

Missing 13 (3%) 1 (<1%) 596 (100%) 5 (1%) 7 (3%)

Prostate-specifi c antigen (ng/mL) 68·8 (24·2–188·4) 84·9 (32·2–271·2) 90·8 (30·8–260·6) 99·6 (33·6–236·8) 52·3 (17·3–153·0)

Missing 1 (<1%) 4 (1%) 6 (1%) 12 (3%) 4 (2%)

Haemoglobin (g/dL) 12·6 (11·6–13·6) 12·7 (11·5–13·7) 12·7 (11·7–13·5) 12·5 (11·3–13·5) 12·9 (12·2–13·7)

Missing 3 (1%) 10 (2%) 0 (0%) 4 (1%) 2 (1%)

Albumin (g/L) NA 43 (41–45) 42 (38–45) 43 (40–46) 43 (41–45)

Missing 476 (100%) 1 (<1%) 16 (3%) 2 (<1%) 1 (<1%)

Alkaline phosphatase (U/L) 113 (80–213) 124 (81–265) 135 (85–270) 155 (98–328) 130 (83–222)

Aspartate aminotransferase (U/L) 24 (20–31) 24 (19–31) 25 (20–33) 25 (20–33) 24 (19–29)

Missing 4 (1%) 1 (<1%) 8 (1%) 3 (1%) 3 (1%)

Data are median (IQR) or number of patients (%). NA=not available. ECOG=Eastern Cooperative Oncology Group.

Table: Patients’ baseline characteristics 
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ranked. Accordingly, we split data from ENTHUSE 33 into 
two separate sets, consisting of 157 patients and 
313 patients. The smaller dataset was used for the open 
testing phase and the larger dataset was used for the fi nal 
scoring phase. Moreover, all reported performance values 
for the evaluated methods  and all comparisons between 
the top-performing model and reference model used the 
larger set of data from the ENTHUSE 33 trial. The 
reference prognostic model for prediction of overall 
survival was a penalised Cox proportional-hazards model 
using the adaptive least absolute shrinkage and selection 
operator (LASSO) penalty.14

For method evaluation, we used the integrated 
AUC (iAUC)23 calculated from 6–30 months as our 

primary scoring metric. For robust determination of 
the best performing team or teams, we used Bayes 
factor analysis and randomisation test based on iAUC 
(appendix pp 4, 5). For each team, we calculated the 
Bayes factor to directly compare the performance of a 
model with the reference model; coeffi  cients for the 
reference model were obtained from reported hazard 
ratios (HRs).14  Furthermore, we evaluated model 
predictions by plotting Kaplan-Meier curves, after 
dichotomising patients for each team separately by 
median risk score. We used the log-rank test to compare 
the two groups using the coxph function in the survival R 
package. We calculated CIs by inverting the Wald test 
statistic. The risk scores generated by each model have 
their own dynamic range; thus, we used the rankings of 
patients for scoring by iAUC or Kaplan-Meier analysis. 
Accordingly, we selected the median risk score as a 
means to compare diff erent methods in a fair manner. 
A major goal of the challenge was to encourage teams 
to develop and test novel methods outside of standard 
survival analysis approaches; thus, risk score 
predictions across all teams varied in their range and 
distribution. A standard threshold could not be 
established fairly for all teams; therefore, we relied on 
rank-based scoring methods, including the iAUC, and 
stratifying risk scores based on the median. We also 
calculated other statistics, including median survival 
and 1-year and 2-year survival for the dichotomised 
high-risk and low-risk groups. We did hierarchical 
clustering on rank-normalised risk score predictions 
from all models in the challenge, using Euclidean 
distance and average linkage.

We used the ENTHUSE 33 dataset to assess the 
calibration of the top-performing model. We plotted the 
predicted survival probability based on the top-
performing model against the observed survival 
proportions at 18, 24, 30, and 36 months. For each time 
cutoff , we divided the population into seven equally 
spaced categories based on the ranked predicted risk by 
the top-performing model. We then calculated the true 
survival proportion within each category and plotted it as 
a point estimate and 95% CI. A 45° line on the plots 
indicated perfect calibration.

The organisers of the DREAM challenge used SAS 
version 9.3 for data curation and R version 3.2.4 
for statistical analyses. R packages used for 
challenge evaluation included survival version 2.38-3, 
ROCR version 1.0-7, timeROC version 0.3, and 
Bolstad2 version 1.0-28. The top-performing model also 
used glmnet version 2.0-5 and hamlet version 0.9.4-2.

Clinical trial data used in the prostate cancer DREAM 
challenge can be accessed online.24 Write-ups, model 
code, and predictions for all teams are reported in the 
appendix (pp 7, 8). Challenge documentation, including 
a detailed description of its design, overall results, 
scoring scripts, and the clinical trials data dictionary can 
be accessed via the Synapse platform.

Panel: Top-performing model constru ction in training datasets

The top-performing model was based on an ensemble of penalised Cox regression 
models (ePCR), as shown in the equation. For each trial-specifi c ensemble component, 
the model estimation procedure identifi ed an optimum penalisation parameter (λ), 
which controls for the number of non-zero coeffi  cients in the prediction model, and 
simultaneously the regularisation parameter (α) with respect to the objective function:

Here, x are the predictors (clinical variables or their pairwise interactions), β are the model 
coeffi  cients subjected to the absolute error and squared error penalisations (|β| and β ², 
respectively), p is the number of predictors, n is the number of observations, j(i) is the 
index of the observation event at time Ti, and Ri is the set of indices j for which 
yj≥Ti (patients at risk at time Ti), where yj is the observed death or right-censoring time. 
The set of indices Ri is redefi ned for each patient i using the above risk criterion 
incorporating y and T. With suitable regularisation, the penalised regression identifi es an 
optimum balance between the model fi t and top predictors, eff ectively generalising the 
Cox model for future predictions. To reduce the risk of overfi tting and to avoid 
randomness bias in the binning, the fi nal ensemble models were optimised using ten-fold 
cross-validation of the iAUC, averaged over multiple cross-validation runs. By modelling 
each trial individually as a separate ensemble component with diff erent optima in the 
equation, we are able to account eff ectively for trial-specifi c variation (appendix p 12). The 
optimum parameters (penalisation λ and norm α) for each trial were fi rst identifi ed using 
cross-validation, after which the model coeffi  cients (β) are estimated by optimising the 
above objective function. 

Data processing entailed missing value imputation with a penalised Gaussian regression 
variant of the equation, with cross-validation when variables with non-missing values 
were used as predictors. Variables with missing values were inferred by training an 
optimum model with the non-missing variables and then imputing the missing values. 
Laboratory values were modelled as continuous variables. Data curation entailed 
unsupervised explorative analyses (appendix pp 5, 6, 12). ASCENT2 trial data were used in 
the imputation and unsupervised learning phases but were omitted from construction of 
the fi nal supervised ensemble predictor, which was based on three components: 
MAINSAIL alone, VENICE alone, and their combination (appendix p 12). The fi nal 
ensemble prediction was done by averaging over the ranks of the component-predicted 
risks for the ENTHUSE 33 dataset (appendix p 12). Averaging of risk score ranks was 
selected to be more robust to trial-specifi c variation and potential outliers. Full details of 
the model and its network visualisation are in the appendix (pp 5, 6, 12) with a list of 
chosen predictors (appendix pp 10, 11).
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Role of the funding source
Project Data Sphere had a collaborative role in design 
and logistics of the DREAM challenge but played no part 
in data collection, data analysis, and data interpretation 
or in the writing of this report. Sanofi  US Services 
provided an in-kind contribution of human resources 
for curation of the raw datasets for the DREAM challenge 
and for clinical and scientifi c support of the challenge 
organisation, at the request of Project Data Sphere. 
Sanofi  personnel participated in design of the DREAM 
challenge, in data analysis and data interpretation, and 
in writing of the report, but had no role in data collection. 
Raw clinical trial datasets for ASCENT2, MAINSAIL, 
and VENICE were available on the Project Data Sphere 
platform and were accessible by all registered users of 
Project Data Sphere, including all DREAM challenge 
participants and organisers, throughout the challenge. 
JG, TW, KKW, BMB, LS, KA, YX, FLZ, and JCC had 
access to raw data for ENTHUSE 33. JG, TW, KKW, 
LS, KA, FLZ, and JCC had access to raw data for 
ENTHUSE M1, during the post-challenge analysis. Data 
for ENTHUSE 33 and ENTHUSE M1 have been made 
freely accessible through the Project Data Sphere 
platform with publication of this report. The 
corresponding author had full access to all data in the 
study and had fi nal responsibility for the decision to 
submit for publication.

Results
The overall DREAM challenge design is shown in 
fi gure 1, with full details in the appendix (p 4). The table 
presents baseline characteristics of patients in the 
fi ve clinical trials included in this analysis. The training 
dataset included: 476 individuals from ASCENT2; 
526 participants in MAINSAIL; and 598 men from 
VENICE. The validation dataset consisted of 470 patients 
from the ENTHUSE 33 trial; 528 men were initially 
enrolled to that trial but, because of regulatory restrictions 
in one country, data for 58 individuals were not made 
public through the challenge. The second validation 
dataset comprised 266 patients from ENTHUSE M1. 
Because of the same regulation restriction mentioned for 
ENTHUSE 33, some data were not provided to Project 
Data Sphere.

129 clinical baseline variables were measured for 
laboratory values, lesion site, previous medicines, 
medical history, and vital signs. When combined and 
assessed, the clinical variables for each trial were similar 
(appendix p 13), although when binary variables—mainly 

Figure 2: Performance of ePCR model, using data from ENTHUSE 33
(A) Time-dependent AUC was measured from 6 months to 30 months at 

1-month intervals, refl ecting the performance of predicting overall survival at 
diff erent timepoints. (B, C) Overall survival was assessed by the Kaplan-Meier 

method, stratifi ed by the median in the top-performing ePCR model (B) and the 
reference model (C). The log-rank test was used to compare risk groups. 

ePCR=ensemble of penalised Cox regression models. iAUC=integrated 
time-dependent area under the curve. HR=hazard ratio.
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representing lesion sites—were judged separately, 
diff erences in clinical trials were recorded (appendix p 13). 
ASCENT2 had a lower frequency of patients with visceral 
metastases (1·1% liver and 1·7% lung) compared with 
individuals in the other three trials (10–14% liver, 11–15% 
lung). By contrast, the proportion of patients with bone 
metastases was high across the four trials (72–100%). 
Median follow-up diff ered among the four studies: 
11·7 months (IQR 8·6–15·8) in ASCENT2; 9·2 months 
(6·4–13·1) in MAINSAIL; 21·1 months (12·9–29·6) in 
VENICE; and 15·3 months (10·9–20·8) in ENTHUSE 33. 
Risk profi les for each of the trials—specifi cally, 

mortality—were similar among the four trials (propor-
tionality of hazards, p>0·5; appendix p 14). The 
proportion of patients who died in each trial was 
138 (29%) of 476 in ASCENT2, 92 (17%) of 526 in 
MAINSAIL, 433 (72%) of 598 in VENICE, and 255 (54%) 
of 470 in ENTHUSE 33.

50 international teams—comprising 163 individuals—
submitted predictions from their models to the 
challenge; with the reference model, the total number of 
models is 51. The distribution of all team scores by iAUC 
is shown in the appendix (p 15). The top-performing 
model was developed by a collaborative team from the 

Figure 3: Projection of the most important variables and interactions in the ePCR model
Automated data-driven network layout of the most signifi cant model variables, according to their interconnections with other model variables. Node size and colour 
indicate the importance of the variable alone for prediction of overall survival and its coeffi  cient sign, respectively. This importance was calculated as the area under 
the curve (AUC) of the penalised model predictors, as a function of penalisation parameter λ. Edge colour indicates the importance of an interaction between 
two model variables, with a darker colour corresponding to a stronger interaction eff ect. Coloured subnetwork modules annotate the variables based on expert 
curated categories. Variable and interaction statistics can be found in the appendix (pp 10, 11). ALB=albumin. ALP=alkaline phosphatase. AST=aspartate 
aminotransferase. BMI=body-mass index. ECOG=Eastern Cooperative Oncology Group. ePCR=ensemble of penalised Cox regression models. HB=haemoglobin. 
HCT=haematocrit. LDH=lactate dehydrogenase. PSA=prostate-specifi c antigen. RBC=red blood cell count.
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Institute for Molecular Medicine Finland and the 
University of Turku. The method was based on an 
ensemble of penalised Cox regression (ePCR) models. 
The ePCR model extended beyond the LASSO-based 
reference model by using an elastic net to select 
additional correlated groups of clinical variables and 
their interactions, modelled as interaction terms (panel). 
The risk predictions from the trial-specifi c ensemble 
components were rank-averaged to produce the fi nal 
ensemble risk score predictions and to avoid trial-
specifi c variation.

The top-scoring ePCR model reported an iAUC 
of 0·791 and outscored all other teams, with a Bayes 
factor greater than 5, surpassing the threshold that 
defi nes signifi cantly diff erent performances (Bayes 
factor >3). The reference model achieved an iAUC 
of 0·743, with a signifi cant diff erence in scores between 
the ePCR model and the reference model (Bayes 
factor >20). With a time-dependent AUC metric, the 
ePCR model outperformed the reference model at every 
timepoint, with the biggest diff erence in performance at 
later timepoints between 18 and 30 months (fi gure 2A). 
A median split of patients into low-risk and high-risk 
groups for the ePCR model resulted in a low-risk group 
comprising 156 patients and 56 deaths (median 
follow-up 27·6 months [IQR 18·2–31·9]) and a high-
risk group containing 157 patients and 107 deaths 
(15·1 [8·5–20·1]). Similarly for the reference group, a 
low-risk group including 156 patients and 59 deaths 
(median follow-up 26·5 months [IQR 17·2–31·9]) and a 
high-risk group with 157 patients and 104 deaths 
(15·6 [8·6–21·8]) were generated. Kaplan-Meier analysis 
showed that low-risk and high-risk groups had 
signifi cantly diff erent overall survival in each model 
(ePCR, HR 3·32, 95% CI 2·39–4·62, p<0·0001; 
reference, 2·56, 1·85–3·53, p<0·0001; fi gure 2B, 2C). 
A full comparison is provided in the appendix (p 9). 
We assessed the calibration of the ePCR model by 
comparing predicted probabilities versus actual 
probabilities at multiple timepoints (appendix p 16).

Figure 3 shows a network visualisation of the 
signifi cant groups of variables identifi ed in the ePCR 
model and their predictive relations, based on the 
importance of the model covariates and their 
interactions. Although many of the variables used in the 
reference model were also included in the ePCR model, 
aspartate aminotransferase was identifi ed as a new 
important predictor. We also recorded a number of 
factors that were included as interaction terms, and of 
particular note were those refl ecting the immunological 
or renal function of the patient. Prostate-specifi c antigen 
was an independent but weak prognostic factor that 
interacted strongly with lactate dehydrogenase and 
aspartate aminotransferase.

In addition to identifying the top-performing model, 
the challenge also tested the other independent models, 
with 30 of 50 outperforming the reference model (Bayes 

factor >3; appendix p 15). We performed hierarchical 
clustering of risk scores from the 51 models to identify 
three distinct risk groups (fi gure 4A), with 98 patients 
(77 deaths) in group A (high risk), 131 patients (61 deaths) 
in group B (moderate risk), and 84 patients (25 deaths) in 
group C (low risk). Diff erences in overall survival among 
these three groups were signifi cant (log-rank p<0·0001), 
with median overall survival of 12·9 months (95% CI 
10·7–15·3) for group A, 20·8 months (18·3–25·6) for 
group B, and 27·7 months (26·6–not available) for 
group C (fi gure 4B).

40 of 50 teams provided a list of common clinical 
factors that were incorporated into their fi nal models; 
the frequencies with which a feature was reported as 
being important or signifi cant in a team’s model are 
summarised in the appendix (p 18). The results not only 
confi rmed the variables identifi ed previously in the 
reference model but also highlighted several factors that 
were not. Of note, aspartate aminotransferase was 
included in more than half the team models. Other 
novel variables that were included in at least 15% of the 

Figure 4: Challenge meta-analysis
(A) Hierarchical clustering of patients (Euclidean distance, average linkage) by rank-normalised prediction scores 
from all 51 models using the ENTHUSE 33 data. (B) Kaplan-Meier plot of survival probability for the three patient 
clusters from (A). Group A=high risk. Group B=moderate risk. Group C=low risk.
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models are total white blood cell count, absolute 
neutrophil count, red blood cell count, region of the 
world, body-mass index, and creatinine.

Application of the ePCR and reference models to the 
ENTHUSE M1 dataset showed model performances 
comparable with the primary challenge, with an 
iAUC of 0·768 for the ePCR model and 0·727 for the 
reference model (fi gure 5A). A median split of risk 
scores in the ePCR model led to a high-risk group of 
133 patients, of which 45 were right-censored, and a 
low-risk group of 133 patients, of which 88 were right-
censored. Kaplan-Meier analysis of the ENTHUSE M1 
data showed signifi cant separation of the high-risk and 
low-risk predicted patients (p<0·0001), with median 
survival of 15·8 months (95% CI 12·8–18·7) for high-
risk patients and 27·1 months (23·2–not available) for 
low-risk patients (fi gure 5B).

Discussion
The prostate cancer DREAM challenge resulted in 
one prognostic model to predict overall survival 
signifi cantly outperforming all other methods, including 
a reference model reported by Halabi and colleagues,14 
and led to a network perspective of predictive biological 
variables and their interactions. The results from the top-
performing team’s model pointed to important 
interaction eff ects with immune biomarkers and markers 
of hepatic function (potentially refl ected in the increased 
amounts of aspartate aminotransferase) and renal 
function. The network visualisation of the prediction 
model suggests a complex relation and dependency 
structure among many of the predictive clinical variables. 
Many of these noted interactions, although not signifi cant 
as independent variables, might be important modu-
lators of key clinical traits—eg, haematology-related 
measurements such as haemoglobin and haematocrit. 
Although further investigation is necessary to determine 
the clinical implication of these associations and provide 
new insights into tumour–host interaction, these 
fi ndings shed light on the complex and interwoven 
nature of prognostic factors on patients’ survival.

Open-data, crowdsourced, scientifi c challenges have 
been highly eff ective at drawing together large cross-
disciplinary teams of experts to solve complex 
problems.25–30 To our knowledge, this DREAM challenge 
represented the fi rst public collaborative competition31 to 
use open-access registration trial datasets in cancer with 
the intention of improving outcome predictions. In total, 
163 individuals comprising 50 teams participated in the 
challenge, applying state-of-the-art machine learning 
and statistical modelling methods. The contribution of 
fi ve clinical trial datasets from industry and academic 
institutions to Project Data Sphere, and their subsequent 
use in an open challenge, enabled the advancement 
of prognostic models in metastatic castration-resistant 
prostate cancer that up to now was not possible. Modellers 
had access to several independent clinical trial cohorts 
with subtle diff erences in eligibility that increased the 
diversity (heterogeneity) of the total patient population 
considered for model development. Access was also 

Figure 5: Performance of ePCR model, using data from ENTHUSE M1
(A) Time-dependent AUC was measured from 6 months to 24 months at 1-month intervals, refl ecting the 
performance of predicting overall survival at diff erent timepoints. The top-performing model (ePCR) is shown 
compared with the reference model. (B) Overall survival was assessed by the Kaplan-Meier method, stratifi ed by 
median risk score. The log rank test was used to compare risk groups. ePCR=ensemble of penalised Cox regression 
models. iAUC=integrated time-dependent area under the curve. HR=hazard ratio.
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provided to data for 150 independent and standardised 
variables over the trials; by contrast, only 22 variables 
were considered by the reference model.14 The challenge 
resulted in creative data-mining approaches that used 
standardised raw event-level tables, which are rarely 
leveraged for prognostic model development, and enabled 
innovative clinical features to be derived for modelling. 
Several teams—including the top-performing team—
made use of these event-level tables. Finally, evaluation of 
the 50 methods (validated by an independent and neutral 
party) provided the most comprehensive assessment of 
prognostic models in metastatic castration-resistant 
prostate cancer. These results are both a benchmark for 
future prognostic model development and a rich source 
of information that can be mined for additional insights 
into both patients’ stratifi cation and the robustness of 
clinical predictive factors.

This study has shown the benefi ts of open data access at 
a time when clinicians, researchers, and the public are 
advocating for improved platforms and policies that 
encourage sharing of clinical trial data.32,33 Project Data 
Sphere has overcome major barriers to data sharing with 
support of data providers, to allow broad access to cancer 
clinical trial data. To researchers who are interested in 
leveraging open-access cancer trial data, this study 
represents a novel research approach that encompassed 
scientifi c rigor and a deep understanding of clinical data 
through eff ective collaboration of multidisciplinary teams 
of experts. The top-performing ePCR model was free of 
any a-priori clinical assumptions, with the exception of 
exclusion of non-relevant variables in early data curation. 
The data-driven modelling process identifi ed automatically 
the best combination of predictors through cross-validation. 
Furthermore, the ePCR modelling process was fully 
agnostic to the variables used in the previous reference 
model; however, many of the same predictors were 
identifi ed, in addition to novel ones. Such data-driven, 
unbiased modelling approaches can mine eff ectively 
the predictive variables and their combinations from 
large-scale and open clinical trial data.

The trials used here represent the standard of care at 
the time when the trials were done, which is a limitation 
of this study. Since 2010, several treatments have become 
available, for use both before and after fi rst-line 
chemotherapy, and new trials have changed the way 
clinicians approach this disease.34 Abiraterone and 
enzalutamide—both approved for fi rst-line treatment of 
metastatic castration-resistant prostate cancer—are not 
included within the scope of this challenge because of a 
limitation of control arm data; both COU-AA-3025 and 
PREVAIL10 have placebo or prednisone controls, and 
comparative trials using these agents as control have not 
been done. Accordingly, trial sponsors should be 
encouraged to contribute data from the experimental 
arm (particularly for approved drugs) to an active and 
engaged research community. Although sponsors are 
concerned that virtual comparisons might be made 

between treatments in experimental arms of diff erent 
trials, there is far more benefi t in leveraging these data to 
validate prognostic factors and models and to investigate 
intermediate clinical endpoints predictive of survival.

The DREAM challenge described here has shown that 
there is opportunity to further optimise prognostic 
models in metastatic castration-resistant prostate cancer 
using baseline clinical variables. For substantial advances 
beyond the work presented here, clinical trial data must 
be made available that refl ects current advancements 
in treatment paradigms, including new data-capture 
techniques such as genomics, immunogenomics, and 
metabolomics that might more accurately describe the 
malignant state of the tumour and its microenvironment. 
Vital to either of these will be the need to share 
patient-level oncology data with the research community 
for the development of the next generation of prognostic 
and predictive models in cancer.
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