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The Shanhaiguan Great Wall is a section of the Great Wall of the Ming Dynasty,
which is a UNESCO World Heritage Site. Both sides of its basic structure are
composed of rammed earth and gray bricks. The surface gray bricks sustain
damage from environmental factors, resulting in a decline in their structural quality
and even a threat to their safety. Traditional surface damage detection methods
rely primarily on manual identification or manual identification following
unmanned aerial vehicle (UAV) aerial photography, which is labor-intensive.
This paper applies the YOLOv4 machine learning model to the gray surface
bricks of the Plain Great Wall of Shanhaiguan as an illustration. By slicing and
labeling the photos, creating a training set, and then training the model, the
proposed approach automatically detects four types of damage (chalking, plants,
ubiquinol, and cracking) on the surface of the Great Wall. This eliminates the need
to expend costly human resources for manual identification following aerial
photography, thereby accelerating the work. Through research, it is found that
1) compared with manual detection, this method can quickly and efficiently
monitor a large number of wall samples in a short period of time and improve
the efficiency of brick wall detection in ancient buildings. 2) Compared with
previous approaches, the accuracy of the current method is improved. The
identifiable types are increased to include chalking and ubiquinol, and the
accuracy rate increases by 0.17% (from 85.70% before to 85.87% now). 3) This
method can quickly identify the damaged parts of the wall without damaging the
appearance of the historical building structure, enabling timely repair measures.
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1 Introduction

1.1 Research background

The Great Wall of Shanhaiguan (also known as Shanhaiguan Pass or Shanhai Pass) was
built in the 14th year of Hongwu’s reign in the Ming dynasty (1,381–1,644). In addition to
the main line of the Great Wall, Laolongtou, Nanhaikou Pass, Ninghaicheng City,
Nanyicheng City, Shanhaiguan City, the First Pass Under Heaven, Dongluocheng City,
Beiyicheng City, Hanmen Pass, and Mount Jiaoshan Dapingding are also located there
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(UNESCO, 2023; Zhao et al., 2023). Shanhaiguan, China, is located
9 miles (15 km) northeast of Qinhuangdao City in Hebei Province
and 305 km (190 miles) from Beijing. The Great Wall is one of the
most ambitious projects built in ancient China. The GreatWall of all
dynasties in China has played a very important defensive role. In
1987, the Great Wall was listed as a world cultural heritage site by
UNESCO (Zhao et al., 2023). The existence of the Great Wall was
also a spiritual line of defense against invasion for ancient China. In
modern times, the Chinese have used the Great Wall as a symbol of

China. As a part of the Great Wall of China, the Shanhaiguan Great
Wall is very important to preserve its integrity and pay attention to
daily maintenance.

The GreatWall of Shanhaiguan is divided into the Binhai (by the
sea) Great Wall, the Plain Great Wall, and the Mountains Great
Wall, depending on the location of the terrain (Figure 1). The Plain
Great Wall is mainly made up of an outer layer covered with gray
brick and an inner layer of rammed earth. The outer layer consisting
of covered brick is bricked together with white ash. Part of the wall

FIGURE 1
World Heritage scope of the Great Wall of Shanhaiguan (Image Source: https://whc.unesco.org/en/list/438/maps/).
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was original to the Ming dynasty’s construction, and another part of
the wall had experienced several protective maintenance activities.
After a long time in its natural environment containing wind, rain,
and inorganic salt, as with other old gray brick buildings, the wall
surface of the gray bricks suffered a variety of damages, such as
chalking, plant growth, ubiquinol, and cracking. This damage must
be detected and repaired in a timely manner to prevent further
structural damage. The traditional methods of identifying damage
faced by brick and stone buildings mainly include on-site artificial
observation and instrumental analysis (Sowden, 1990; Flores-Colen
et al., 2011; Hulimka et al., 2019; Han et al., 2022; Zhao et al., 2023).
This work is carried out by experts (mostly experienced craftsmen or
professional workers). Although traditional procedures can help
obtain accurate building conditions, they also have several
disadvantages. First, for large projects, such as the Great Wall,
manual procedures require great manpower; with limited
personnel, it takes a long time to find damaged areas, which may
cause greater damage due to the untimely repair process in
comparison with the timely confirmation of damage conditions.
Second, since the Shanhaiguan Great Wall is tall and parts of it are
located on mountains, it is very difficult to reach all parts of the wall
facades. Correspondingly, it is difficult to identify their damage.
Therefore, we need a more efficient method to help experts identify
damage and minimize unnecessary further damage.

1.2 Literature review

The rapid development of technology in various field of science
and engineering has enabled the rapid growth of efficient high-level
analyses. Two important achievements are unmanned aerial vehicles
(UAVs) and image processing via machine learning techniques. A
UAV system can help us obtain photos of all the details of building
facades, especially for places that are difficult to reach (Hoła and
Czarnecki, 2023; Qinhuangdao, 2023). Such systems are often used
in conjunction with terrestrial laser scanning for automated damage
identification and analysis (Hoła, 2023; Sestras et al., 2020; Ulvi,

2021); however, this strategy is not sufficiently convenient because
terrestrial laser scanning requires professional equipment in
addition to photos of facades. Due to its strong ability to learn
from data, machine learning can solve problems efficiently. Image
processing has been widely applied in biology, medicine, astronomy
and different areas of engineering. The combination of machine
learning and image processing can help solve more complex
problems (Dolecek and Cho, 2022). Researchers can take photos
with a UAV and then use machine learning to process the images to
efficiently identify the damage suffered by heritage objects. The
primary image processing models for object detection are DPM,
R-CNN, YOLO and the SSD (Felzenszwalb et al., 2009; Girshick
et al., 2014; Liu et al., 2016; Redmon et al., 2016). The properties of
these methods are listed in Table 1. Scholars have carried out
damage detection applications by performing image processing
on cultural heritage objects or traditional buildings (Foti, 2015;
Azarafza et al., 2019; Galantucci and Fatiguso, 2019; Wang et al.,
2019; Mishra et al., 2022; Samhouri et al., 2022; Karadag, 2023). For
example, the architectural heritage of the city of “Al-Salt in Jordan
was detected based on the CNN-VGG16 model (Samhouri et al.,
2022). Machine learning (ML) has also been applied to ancient
masonry structures (Foti, 2015; Galantucci and Fatiguso, 2019;
Mishra et al., 2022) to predict the missing or damaged parts of
historical buildings within the scope of early Ottoman tombs
(Karadag, 2023). Based on Table 1, if YOLOv4 is applied to
Great Wall brick damage identification, it will be more efficient
and prevent more unnecessary damage.

1.3 Problem statement and objectives

The Department of Cultural Relics Protection used UAVs to
take photos of the Plain Great Wall of Shanhaiguan for inspection. If
image analysis technology can automatically identify the type of
damage suffered by the surface bricks of the Great Wall, it can also
reduce the required labor costs to a certain extent. Therefore, this
paper takes the Shanhaiguan Great Wall as an example to build a

TABLE 1 Advantage and disadvantages of image processing methods for object detection.

Types of
models

Full spelling of the different
types

Advantages Disadvantages

DPM

Intuitive and simple method General performance

Deformable parts Fast operation speed Artificially designed for incentive features; Heavy workload

Model Adaptation to animal
deformation

Poor stability

R-CNN Region-Based Convolutional Neural
Network

Improved speed

Large number of repeated operations
Reduced number of

calculations

YOLO You Only Look Once

Very fast detection speed

Not very high prediction accuracy (gradually improved in later versions
such as YOLO v4)

Less background
misjudgments

Better generalization

SSD Single-Shot Multibox Detector High overall mAP. Debugging process is very dependent on experience; General recall of small
targets
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YOLOv4 machine learning model, verify the accuracy of machine
learning, and realize the automatic detection of the damage types
experienced by gray bricks on the surface of the Shanhaiguan Great
Wall. In this paper, the researchers investigate five questions.

(1) How many distinct types of damage can gray bricks be classified
into as a result of on-site investigations and photographs?

(2) How does machine learning contribute to the development of the
core technology that helps detect various types of brick damage?

FIGURE 2
The climate of Qinhuangdao. (Image Source: drawn by the author).
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(3) What is the outcome of the photo recognition and analysis of
the damage types suffered by the gray bricks on the Shanhaiguan
Great Wall?

(4) How effective is the trained machine learning model?
(5) Compared to manual identification, how precise is automatic

detection?

2 The Great Wall and influential climate
factors

2.1 Climate characteristics of Qinhuangdao

Shanhaiguan is located in northeastern Qinhuangdao City,
Hebei Province, bordering Yanshan (a mountain range in Hebei
Province, China) to the north and Bohai (an inland sea in Hebei
Province, China) to the south. The climate is described in Figure 2.
The monsoon-influenced, humid continental climate (Koppen
Dwa) of Qinhuangdao features four distinct seasons. January’s
average daily temperature of 4.8°C is colder than Beijing’s
average daily temperature of 3.7°C. This is because the Siberian
high frequently induces northwesterly winds, reducing the influence
of the ocean (Weatherspark, 2023). Summers are hot and humid due
to the East Asian Monsoon, which frequently produces onshore
winds. Summer is also when the coast moderates the weather the
most: the average high temperature here in July is 28.1°C (compared
to 30.9°C in Beijing). July and August have an average daily
temperature of 24.7°C, making them equally warm. The average
annual temperature is 11.0°C (51.8°F), and 70% of the annual
precipitation falls between June and August (Qinhuangdao-
Climate, 2023). The difference in temperature between day and
night is significant. In the winter, freeze‒thaw cycles occur. The
average annual precipitation is 600–700 mm. It is windy throughout
the year, and this is influenced by both land and sea breezes.

2.2 Analysis of the architectural features of
the Shanhaiguan Great Wall

Most sections of the Plain Great Wall in Shanhaiguan are in a
natural environment surrounded by trees or fields rather than in an
urban environment, and there are no buildings surrounding them to
shield them, so the effect of climate is more obvious. In ancient
China, the construction of the Great Wall was a costly, enormous,
and arduous project. Before the Ming Dynasty, the main building
materials used to build the Great Wall were loess, sandstone, and
wood. During the Ming Dynasty, lime, gray bricks, and tiles were
used in large quantities. Before the Ming Dynasty, the materials used
were local, and the stones were mined on the mountain. Regular
stone materials were also made in nearby quarries, and some
quarries not only produced Great Wall stones but also various
Great Wall stone components. Once the Ming Dynasty arrived, a
large number of gray bricks, blue tiles, and lime stones were used to
build the Great Wall, and they were basically fired in nearby kilns. A
section of the Shanhaiguan Great Wall is shown in Figure 3. The
lower half of the wall was built with more gray bricks. If not
considered, subsequent damage will affect the building structure
and lead to collapse.

2.3 Damage types and cause analysis of the
Shanhaiguan Great Wall

Four common damage types affect the Plain Great Wall in
Shanhaiguan. These causes of damage are listed in Table 2, and the
interactions between the damage types and climate factors are
illustrated in Figure 4. Among the four types of damage, brick
ubiquinol generally occurs on bricks with relatively recent ages,
while brick chalking is more serious than brick ubiquinol, but it
generally occurs on older bricks. Brick chalking causes a brick’s load-
carrying capacity to decrease, and when the stress exceeds a brick’s
load-carrying capacity, the brick breaks. Eventually, it collapses
(Figure 5).

3 Materials and methods

3.1 Research process

This article aims to discuss the target detection method based on
machine learning and use the YOLOv4 model trained in this
experiment to identify the surface damage types affecting the
Shanhaiguan Great Wall, including chalking, plant growth,
ubiquinol, and cracking. This study provides an intelligent
detection method and scientific research tools for repair work
and material heritage (the machine learning operating
environment is depicted in Appendix A). Currently, the type of
damage affecting the surface of the Great Wall is detected primarily
throughmanual inspection, but this method is labor-intensive, time-
consuming, and affected by subjective error. Therefore, using
YOLOv4 for automated damage detection can greatly improve
efficiency and reduce errors. In addition, data augmentation
techniques are used in the model training of this study, which
helps to improve the generalization ability of the model, thus making
it more suitable for practical applications. YOLO (You Only Look
Once) is a real-time object detection system. Different from
traditional target detection methods, YOLO treats target
detection as a regression problem and predicts the bounding
boxes and categories of all objects in the image at once.
YOLOv4 is a version of the YOLO series. It has made many
optimizations and improvements based on the original YOLO,
improving the accuracy and speed of detection. Its main features
are speed, accuracy, and the ability to handle objects of many sizes
and shapes. Figure 6 depicts the seven steps of the research
methodology: data collection, data unification, data labeling,
model training, model testing, results analysis, and model
application.

(1) Data collection. At the site of the Shanhaiguan Great Wall,
researchers used mobile devices such as digital cameras to
obtain high-resolution images of the surface of the
Shanhaiguan Great Wall in a multidirectional and multiangle
manner. A total of 1,839 photos of the Great Wall’s gray brick
materials were collected, providing a rich source of data and
necessary information for damage identification.

(2) Data unification. When analyzing and processing the
collected photos, the researchers found that the damage
faced by the gray bricks on the surface of the Great Wall
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mainly included of four situations: gray brick chalking, gray
brick cracking, plant damage, and gray brick ubiquinol.
Among them, the chalking of gray bricks was the main
damage type, accounting for more than 80% of all photos.

To ensure the effectiveness of the training process, the
researchers selected representative images of each damage
type for induction and used them as training data for the
model. At the same time, to improve the effectiveness of

FIGURE 3
Structural schematic of the Plain Great Wall of Shanhaiguan. (Image Source: drawn by the author).

TABLE 2 The relationships between the types of damage faced by gray bricks and climate factors.

No. Types of
damage

Damage causes Climatic factors

1 Chalking

1) Many times, temperature and humidity changes are caused by the invasion of wind 1) Many changes in temperature and
humidity

2) Freeze‒thaw cycles and capillary water action cause brick chalking. When the gray bricks
experience chalking damage, if we do not repair them in time, the chalking bricks will absorb more

moisture, resulting in further chalking deterioration

2) The invasion of wind

3) Freeze‒thaw cycles and capillary
water action

2 Plant damage

1) The architectural form of the Great Wall is different from that of ordinary architectural walls. To
maintain the stability of the Great Wall, the common structure of a ladder retaining wall is adopted.
The bricks of each layer of the wall shrink slightly, forming a trapezoidal structure that is wide at the
bottom and narrow at the top. This structure allows each brick layer to have a small horizontal plane,
which is more likely to cause rain retention and moss, grass, and tree growth. In addition, a layer of
decorative brick is built into the top of the wall (Figure 3). In the decoration brick position, its
horizontal plane is approximately 80 mm, which also causes rain and plant seeds to stay and grow

moss and plants Water and moisture

2) Moss is spongy and can absorb water on the surface of the wall for a long time, which keeps the
bricks and cracks under it wet for a long time. The ion exchange process the moss uses to survive
produces a variety of organic acids. These organic acids produce a gelatinous membrane on the wall
surface that can cause lasting damage to the bricks. The roots of grass and trees are conduits for
bricks, making water go deep into the interior along the roots, resulting in long-term damp
conditions on the wall. The root growth produces stress, which may lead to arching changes

3 Ubiquinol

The Great Wall has been repaired several times; some of the bricks have been replaced, and
compared with the ancient bricks, the bricks in the protective repair areas have produced more pan-
alkali phenomena under the action of moisture and water capillarity. These soluble salts not only
affect the beauty of the bricks but also absorb moisture. Their cumulative effect leads to chalking

Water

4 Cracking Due to the action of various damages, individual bricks may crack. In more serious cases, the whole
structure may undergo displacement and settlement, resulting in a whole wall fracture

1) Many changes in temperature and
humidity

2) The invasion of wind

3) Freeze‒thaw cycles and capillary
water action
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model training, all pictures were uniformly processed into a
size of 512 × 512 pixels.

(3) Data labeling. To ensure the accuracy of the training data, a
team of cultural relic experts and architectural scholars
conducted four rounds of label drawing and checking on
372 photos. The label content included the damage type and
the location information of the damage type in the picture.
Through this process, the researchers obtained an accurate
training dataset, which laid a solid foundation for the
subsequent model training procedure.

(4) Model training. The target detection framework (YOLOv4) was
used for model training, and the collected photos and manually
labeled datasets were used for training. Furthermore, data
augmentation techniques such as random scaling, random

rotation, random cropping, and random perturbation were
adopted to improve the robustness and generalization ability
of the model. During the training process, the researchers
gradually optimized the parameters and structure of the
model. For example, hyperparameters such as different
learning rates, numbers of iterations, and batch sizes ensured
that the model could accurately identify damage.

(5) Model testing. The researchers tested the trainedmodel by using a
variety of methods, including calculating the loss value index of
the model and comparing the pictures of the detection results, as
well as testing and debugging 200 trainedmodels. Themodel with
the best detection effect was selected as the model for practical
application. Through the test, the researchers determined the
performance indicators of the model and visualized the results.

FIGURE 4
Damage types and label names of the gray bricks of the Shanhaiguan Great Wall. (Image Source: the picture was taken by the author, and the text
was drawn and added by the author. The shooting date was 24 April 2023).

FIGURE 5
The influences of climate factors on damage types. (Image Source: drawn by the author).
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(6) Results analysis. Results analysis provides an in-depth
exploration of model test results, aiming to evaluate the
accuracy and reliability of the model and explore its possible
errors and deficiencies to improve and optimize the model. At
the same time, the type and number of possible errors are
checked, such as false detections and missed detections. In
addition to the quantitative indicator comparison, the results
analysis also needed to be combined with the actual application
scenario and comprehensively consider factors such as the
effect, speed, and stability of the model to find the optimal
model solution.

(7) Model application. The trained model was applied to an actual
damage recognition task, and the performance and
characteristics of the model were analyzed to provide
technical support for Great Wall repairs. When applying the
model, the researchers first deployed and optimized it to ensure
that it could quickly and accurately process the damage data
derived from the gray bricks on the surface of the Great Wall.
The researchers then captured a set of high-resolution images of
the Great Wall’s outer walls via cell phones and used the model
to identify the damage in the data.

Through the above method, the researchers established a
research process for identifying the damage types on the surface
of the Great Wall based on machine learning, which can
automatically detect and identify the damage types on the surface
of the Great Wall. It provides an efficient, accurate, and reliable
technical means for repairing the Great Wall and has important
practical value.

3.2 Sample processing

To train a machine learning model, data needed to be collected
and processed. In this study, the researchers photographed and
recorded the surface materials of the Shanhaiguan Great Wall. A
total of 1,839 photos of the gray bricks were collected (Figure 7),
covering the outer walls of the bottom floor and the top platform of
the Great Wall; the positions of the gray bricks of the Great Wall
were covered to the greatest extent possible. All photographs were
manually reviewed to select photographs that were representative of
the target damage types, and similar photographs were rejected. In

the end, a total of 361 photos were used as material samples for
machine learning, including 107 photos of gray brick chalking,
47 photos of gray brick cracking, 100 photos of plant damage,
and 107 photos of gray brick ubiquinol.

To improve the efficiency of the machine learning training
process and standardize the materials, the researchers processed
all photos and unified their dimensions to 512 × 512 pixels. Finally,
the researchers labeled the 361 photos individually to identify the
types of damage faced by the gray bricks. Once complete, another
group of researchers reviewed and outputted the corresponding
photo files and label files. These label files are used as input data for
machine learning model training so that the model can learn the
damage types affecting gray bricks and perform accurate damage
identification in the next step: practical application.

3.3 Model training

In this study, the researchers use the YOLOv4 target detection
model as the training model. YOLOv4 is a target detection
framework based on deep learning (Bochkovskiy et al., 2020),
and its network structure has the following three characteristics
(Figure 8). The main structure of the model includes a backbone
network, a feature pyramid network, and a detection head. The
backbone network adopts the CSPDarknet53 structure and uses
residual blocks and cross-layer connections to improve its feature
extraction effect and the expression ability of the network (Yuan and
Xu, 2021). The feature pyramid network adopts the PANet structure
and fuses feature maps with different scales to improve the accuracy
and stability of target detection. The detection head includes
multiple convolutional layers and pooling layers, which are used
to generate a detection frame and predict the category and
confidence of the target (Yu et al., 2017). In addition,
YOLOv4 uses a series of techniques, such as data enhancement,
multiscale training, and category weight adjustment, to further
improve the performance of the model. In terms of evaluation,
YOLOv4 uses indicators such as the mean average precision (mAP)
and frames per second (FPS).

To make the model more accurate, the researchers employ data
augmentation techniques, including random scaling, random
rotation, random cropping, and random perturbation. The
specific functions are as follows.

FIGURE 6
Research process with seven steps. (Image Source: drawn by the author).
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(1) Random scaling: During the model training process, the
training image is randomly scaled to simulate object size
changes in actual scenes.

(2) Random rotation: During the model training process, the
training image is randomly rotated to enhance the model’s
ability to recognize objects at different angles.

(3) Random cropping: During the model training process, the
training image is randomly cropped to simulate the
appearance of objects in different positions in actual scenes.

(4) Random perturbation: During the model training process, the
pixel value of the training image is randomly perturbed to
enhance the model’s resistance to image noise and interference.

These techniques augment the dataset and mitigate model
overfitting on the data. During the training process, the
researchers gradually optimize the model parameters and
structure. For example, structures such as multilayer convolution,
pooling layers, and fully connected layers, as well as techniques such
as learning rate adjustment and batch normalization, are used to
ensure that the model can accurately identify damage. Finally, after
several rounds of iterative training, the researchers obtain a series of
models with different iteration cycles. In the next research step, these
models are tested to select a damage detection model for Great Wall
bricks with high accuracy.

In addition, when the machine is trained for the first time, since
it has no prior knowledge related to the recognition of Great Wall
gray bricks, no relevant weight file is available. Therefore, this study
adopts the method of transfer learning, using the pretrained weights
of the VOC dataset to initialize the parameters of the backbone
feature extraction network used by the model. The entire model is
trained for a total of 200 epochs, with the Adam optimizer used to
calculate the gradients and update the parameters. Given the limited
amount of data in the training set, the batch size is set to 2. Training
is frozen with a learning rate of 0.001 for the first 10 iterations to
speed up the convergence of the model and avoid corrupting the
pretrained weights. Subsequently, in the next 190 iterations, the
learning rate is set to 0.0001, the backbone feature extraction
network is unfrozen, and the entire model is further trained with

a smaller initial learning rate to speed up the training time of the
entire network.

4 Discussion: automatically identifying
and analyzing the results

4.1 Model testing

In the model testing phase of this study, to comprehensively
evaluate the performance of the model, the researchers use two
different testing methods. First, the loss value of the model is
calculated on the test set, which can help the researchers
understand the performance achieved by the model on the
testing dataset and optimize the model. Second, the researchers
compare and analyze the pictures of the detection results produced
by the model so that the detection effect of the model can be
intuitively observed, and the accuracy and reliability of the model
can be verified. Through the comprehensive analysis performed with
these two methods, the researchers can comprehensively evaluate
the performance of the model and provide guidance for further
optimization and improvement.

(1) The loss value of the model is calculated on the test set. During
the model training process, a corresponding weight file is
generated for each iteration cycle, and these weight files use
two indicators, the loss and val_loss, to evaluate the training
performance of the model. “Loss” represents the loss function
value calculated on the training set and signifies the error
induced by the current model on the training set, that is, the
gap between the predicted value and the real value when the
model is learning the training data. By continuously optimizing
the model parameters, the loss value can be continuously
reduced, thereby improving the fitting ability of the model
on the training set. val_loss represents the loss function value
calculated on the validation set, indicating the error of the
current model on the validation set, that is, the performance
achieved by the model when predicting unknown data. Usually,

FIGURE 7
Photos of gray bricks possessed by the Shanhaiguan Great Wall. (Image Source: photographed by the author).
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with the continuous optimization of the model, the loss value
and val_loss value gradually decrease. The loss and val_loss
values can help the researchers understand the training effect
and generalization ability of the model so that it can be further
adjusted and improved (Guan et al., 2022). During the first
training epoch, the loss value is greater than the val_loss value
(loss value = 125.538, val_loss = 13,473) (Figure 9). After dozens
of iteration generations, the values of the two metrics decrease
precipitously to less than 4, eventually stabilizing at
approximately 3. At the 200th epoch, the loss and val_loss
values are 2.783 and 3.239, respectively. When the loss and val_
loss values reach approximately 3, the model training process
reaches its bottleneck, and no further decline is observed.

Therefore, the researchers choose the weight files of the
120th, 174th, and 200th epochs for additional testing.

(2) The test results of the model are compared and analyzed with
pictures. To evaluate the performance of the tested models and
identify the best model, a picture comparison analysis is
performed in this study. Specifically, the researchers use the
above three weight files with different parameters to control the
outputs of the models. To increase the randomness of the
samples, the researchers randomly select six samples from
the 361 training set samples as test samples and name them
A–F. Subsequently, the researchers load different weight files
into the models, output the detection results, and conduct a
comparative analysis.

FIGURE 8
YOLOv4 network framework used in this study. (Image Source: drawn by the author).
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Under the same confidence level (0.5), the detection
performances yielded by the three models with different training
parameters are different (Figure 10). First, the Max Epoch model has
omissions in its detection results for sample D (D2), failing to detect
any damage type in sample D. Second, the Min Loss and Min Val_
loss models present the same detection results for samples D, E, and
F. However, for sample A, the MinVal_loss model can detect more
brick damage types. Based on a comprehensive observation, the Min
Val_loss model has the best detection effect among all the models;
no missing results occur, and more types of brick damage can be
detected. Therefore, when selecting a model, MinVal_loss should be
preferred as the training parameter settings to obtain better
detection results.

Overall, the effect of the Min Val_loss model is best, but its
detection results are not sufficient for covering all the damaged
bricks in the picture, so the confidence parameters need to be further
adjusted. In the target detection model, confidence is used to judge
the credibility of the obtained target detection results. Usually, the
model provides a probability value for the existence of an object and
bounding box position information. A lower confidence level can
increase the detection sensitivity of the model but may lead to false
detections, while a higher confidence level can reduce the false
detection rate but may decrease the detection sensitivity of the
model. In Figure 10, since the usual confidence level (0.5) cannot
capture all the damaged bricks in the picture, the confidence level is
reasonably adjusted by gradually reducing it (0.3 and 0.1) and
performing picture tests. In the experiment, through multiple
tests involving different confidence and weight files, it is found
that when the confidence is 0.1, the weight file of Min Loss can
reduce the false detection rate and missed detection rate while

ensuring high detection sensitivity. As a result, the weight file of
Min Loss is ultimately chosen, and a confidence level of 0.1 is set as
the model and testing parameters for subsequent analysis purposes.
Thus, all damaged bricks in the image can be detected with greater
precision, and the risks of false detections and missed detections are
reduced.

To gain a deeper understanding of the model’s internal working
principles, the model’s head and layer are converted into images
(feature maps) so that model parameters can be observed more
clearly, and the detection accuracy can be tested (Figure 11). In the
YOLOv4model, “head” refers to the combination of positioning and
classifier mechanisms, whereas “layer” refers to the convolutional
layer stack and other computing layers.

The specific explanation is as follows.

(1) Output heads: This consists of Head 0, Head 1, and Head 2.
Each head is responsible for detecting objects with different
scales, and by combining the results of these output heads, an
object detection result can be obtained for the entire picture.
Among them, Head 0 processes the largest feature map, so it
does not perform well in terms of detecting small objects, but it
performs better with regard to detecting large objects. Head
2 deals with the smallest feature map, so it does a better job of
detecting small objects but is less effective for large objects. Head
1 addresses the feature map with an intermediate scale, and its
detection effect is between those of Head 0 and Head 2.

(2) Each head contains score, class, and class_score layers. Among
them, the score layer is responsible for predicting the confidence
of the bounding box. It indicates the probability of the existence
of the target object, and the higher its value is, the greater the

FIGURE 9
The LOSS values of the model training process. (Image Source: drawn by the author).
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possibility of the existence of the object. The class layer is
responsible for predicting the category of each bounding box.
It outputs a vector containing the predicted classes, the length of
which is equal to the number of classes; the class_score layer,

which is responsible for predicting class scores, represents the
likelihood that the bounding box belongs to each class. It
represents the confidence that each bounding box belongs to
each class.

FIGURE 10
The outcomes of various weight file tests. The test samples are selected at random from the 361 training set samples (labeled A to F), and different
weight files are loaded into the model to generate the results. (Image Source: drawn by the author).
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(3) The indicators combined by the heads and layers can be used
to evaluate the target detection accuracy of the model, and at
the same time, they can be used to observe the working
principles and internal calculation process of the model. For
example, by analyzing the classification accuracies and
confidence scores produced for different types of objects,
the detection effects yielded by the model for specific types of
objects and the optimization direction of the model
parameters can be determined (Jiang and Wang, 2020). In
addition, by observing the detection results produced at
different levels, it is also possible to judge the
performance, pros and cons of the model at different
detection levels and then adjust and optimize the model
parameters.

The following can be found in this research (Figure 11).

1) Layer 0 can capture the probability of the specific location of the
damaged Great Wall bricks in the picture.

2) Layer 1 is responsible for judging the number of damage
categories experienced by the Great Wall bricks in the picture.

3) Layer 2 predicts the probabilities of different damage categories
for the Great Wall bricks in the picture according to the results of
Layer 0 and Layer 1.

4) The final detector draws an anchor box according to the result of
Layer 2; that is, the bounding box containing the coordinates,
width, height, and color of the center point.

Through the above process, the researchers can observe some
characteristics of the test samples and models. 1) Different colors in
the feature map represent the importance or activation of different
regions. Green or blue areas indicate areas with low weight values,
while red or yellow areas indicate areas with high weight values. A
heatmap composed of these colors can indicate how much the
detection model pays attention to object detection or how much
it responds to a particular object. 2) The reaction of Head 0 is most
intense because the scale of the Great Wall gray bricks in the picture
is larger, and it is more suitable to use a shallower layer for detection.
Head 2 has almost no response because the scale of the Shanhaiguan
Great Wall bricks in the picture exceeds the range that Head 2 can
detect. 3) The reaction of Layer 1 is most intense because this layer is
responsible for extracting the category information of the damaged
bricks, and the category information of the damaged bricks has a
greater impact on the detection results. The responses of Layer 0 and
Layer 2 are similar and moderate because they are responsible for
detecting the position information of the brick damage, and the
impact of the position information on the detection results is
relatively balanced.

FIGURE 11
The effect of the layer’s feature extraction process on the detection obtained for the test image. (Image Source: drawn by the author).
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4.2 Model application

Photos of the Shanhaiguan Great Wall are taken as materials for a
model application experiment. Without any postprocessing, the sizes of
these images are 6,000 × 4,000 pixels. In addition, the newly captured
images are affected by factors such as the shooting angle offset of the
handheld camera, light and shadows, which can be used to determine
whether the failure to detect wall bricks is due to a photo’s scale, angle,
light, or shadow in general practical applications. Figure 12 depicts the
effect of the layer’s feature extraction procedure on the detection results
obtained for one of the aforementioned photographs.

(1) The model supports the detection of multiple photoscale ranges.
Compared to the images in the training set, the variety of the field
photographs of ShanhaiguanGreatWall bricks is greater, as is the
wall brick recognition area. The model is compatible with a
broader range of images, the detection process is unaffected, and a
recognition effect comparable to the test result can be achieved.

(2) The shooting angle is unimportant to the model. The application
photos taken on-site have certain upward viewing angles, but this
does not affect the recognition of the detection content.

(3) The model can exclude the influences of light and shadows in the
input photo during the detection process. Many light and shadow
occlusions are contained in the photos of the Shanhaiguan Great
Wall bricks. The feature extraction process of the layers is not
affected during the detection process, and the recognition results
are not affected in the final detection step.

From the pictures taken at different positions of the
Shanhaiguan Great Wall and the detection results, the overall
model detection effect is improved (Figure 13). Most of the wall

damage conditions can be identified, but certain errors are observed
in special cases.

(1) When there is more ubiquinol in the gray brick body, the model
misses it. The gray brick body in the lower right corner of
Project 1 has localized ubiquinol that is not identified.

(2) When ubiquinol and chalking appear at the same time, the
model cannot accurately distinguish the difference between
them. In the central area of Project 2, the model only
recognizes chalking due to the damage caused by ubiquinol
and the chalking on the whole brick wall.

(3) A small number of misjudgments occur. Although the model
incorrectly perceives the brick on the left side of Project 3 as
cracked, it is not cracked.

(4) When plants cover the bricks, the joints of the bricks become
blurred, and individual bricks are not recognized.Many plants are
located on the left side of Item 4, and the bricks are connected into
one piece, which increases the difficulty of model detection,
resulting in unrecognized parts of some bricks with plants.

To further illustrate the accuracy of themodel in this application, the
researchers calculate statistics concerning the accuracy rates of the
samples in this study (Figure 14). There are 107 ubiquinol samples
among the 361 total samples, and the model correctly identifies 69 of
them, yielding a 64.49% identification accuracy rate. The data contain
107 chalking samples, and the model accurately identifies 98 of them,
yielding a 91.59% identification accuracy rate. The dataset includes
47 cracking samples, 46 of which the model correctly identifies, and the
identification accuracy rate is 97.87%. The model accurately identifies
97 of the 100 plant samples, yielding a 97.00% identification accuracy
rate. None of the samples are detected or missed. The overall accuracy

FIGURE 12
The effect of the layer feature extraction process on on-site photo detection. (Image Source: drawn by the author).
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rate basically meets the imposed detection expectations; the accuracy
rates produced for chalking, plant, and cracking are relatively high; and
the accuracy rate of ubiquinol needs to be improved. For example,
misjudgments make it difficult to distinguish between chalking and
ubiquinol. When the gray brick surface is sunken, cracking features are
misidentified. When the color of the gray brick body is similar to that of
plants, plant features are misidentified.

As mentioned above, judging from the results of the overall model
application, the research model has the ability to detect the types of gray

brick damage faced by the Shanhaiguan Great Wall, but its detection
accuracy, type recognition, and accuracy need to be improved. Although
the model cannot completely replace the manual detection depth of
professional researchers, it yields improved detection efficiency and can
be used as an auxiliarymechanism for projects such as the inspection and
restoration of the Shanhaiguan Great Wall. In addition, although this
study only examines the gray bricks of Shanhaiguan, it can still be used for
reference and expanded application in research involving similar brick
wall structures or military defense-based architectural heritage objects.

FIGURE 13
The detection effects produced for various photographs of construction sites. (Image Source: drawn by the author).

FIGURE 14
Manual model validation. (Image Source: drawn by the author).
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4.3 Main limitations and wider applicability

Although the proposed method can rapidly process the
numerous photos taken by UAVs and save much manpower, due
to its lower accuracy than that of the R-CNN series, experts must still
check the unidentified pictures. Due to the artificial data labeling
procedure, the initial workload is not small. Even so, because the
method used in this paper can combine UAV photos and machine
learning, it offers an object detection methods, especially for parts
that are difficult to reach, such as damage on the tall facades of
modern concrete buildings, not just for heritage objects.

Affected by the limitations of the YOLO model algorithm, the
developed method does not distinguish brick ubiquinol well, with an
accuracy of 64.49%. The reason for thismay be that ubiquinol boundaries
are more unclear and that their color is similar to that of the ash in the
cracks in the brick wall. The colors of the other three types of damage are
different from those of the bricks, and these damage types are detected
well (the corresponding accuracies are all above 90%). This means that
the model cannot perform well in terms of material distinction but can
perform well in color detection. To improve the detection effect of the
model, further research in the future must continue to optimize the
model, increase the amount of training data or utilize another model
structure, such as the SSD method. In general, this study shows how
machine learning can be used to find damage in heritage brick walls.

5 Conclusion

Qinhuangdao has a humid continental climate, hot and humid in
the summer and freeze‒thaw cycles in the winter, which can easily lead
to aging and damage in city walls and bricks. The Shanhaiguan Great
Wall is located in northeastern Qinhuangdao City, Hebei Province. It is
located in a typical climate-affected area. The wall is often eroded by
environmental factors such as long-term wind and rain and inorganic
salts. Therefore, regular monitoring and maintenance measures are
required for the Shanhaiguan Great Wall. Nevertheless, the
Shanhaiguan Great Wall has a large area and a large number of
brick walls, making the manual detection of individual damaged
contents a laborious task. Therefore, this paper proposes a machine
learning-based method for the automatic monitoring of wall brick
damage types. The method detects four types of damage suffered by the
Shanhaiguan Great Wall based on the YOLOv4 target detection
framework: chalking, plant damage, ubiquinol, and cracking. In this
study, a total of 1839 on-site photographs are used to train themodel for
200 epochs, after which three different weight files are tested, yielding a
good detection effect in practical applications. Thismethod canmonitor
a large number of wall samples in a short period of time and detect
ancient brick walls more efficiently than the manual detection
technique. The significance of this study is primarily reflected in
three aspects.

(1) This non-destructive testing method allows for a better
understanding of the actual conditions of historic buildings.
It can help the government and historical protection
departments more accurately understand the actual statuses
of World Heritage military defense buildings.

(2) The model can improve the efficiency of building damage
monitoring. Without destroying the appearance of historical

building structures, the damaged parts can be quickly identified,
and repair measures can be taken in time.

(3) The proposed approach can assist researchers in their research. The
information obtained frommonitoring can better assist researchers
and provide an important basis for conducting research on
historically protected buildings. According to the monitoring
results, different types of repair programs are proposed.

The researchers in this study collects much data concerning the
Shanhaiguan Great Wall in Qinhuangdao. Through the training,
testing, and application of the model, it is proven that the proposed
method is effective for the monitoring the damage experienced by
gray bricks. Compared with previous related research, the
discrimination and recognition readiness rates achieved for
recognition types are improved. The identifiable types are
increased to include chalking and ubiquinol, and the accuracy
rate of the model increases by 0.17% (from 85.70% before to
85.87% now). Additionally, the following three aspects of the
model’s detection process need to be improved.

(1) Improve its recognition accuracy: It is necessary to increase the
amount of training data and label more representative training
data so that the model can more accurately identify the types of
objects.

(2) Perform parameter adjustment: The parameters of the model
should be adjusted to increase the recognition performance of
the model, such as parameter adjustments in the learning rate
and the activation function.

(3) Enhance the generalization ability of the model: Data
enhancement techniques, such as scaling and rotation, should
be used to increase the recognition accuracy of the model.
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Appendix A: Machine learning
environment

Machine learning environment: The operating system is
Windows 11 (X64), the CUDA version is 11.5, the deep learning
framework is PyTorch (1.13.0), and the graphics card and processor
are a GeForce GTX 3070 (16 G) and an AMD Ryzen 9 5900HX
(3.30 GHz), respectively.
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