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Crowdsourced assessment of common genetic
contribution to predicting anti-TNF treatment
response in rheumatoid arthritis
Solveig K. Sieberts et al.#

Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely

used to reduce disease progression, treatment fails in Bone-third of patients. No biomarker

currently exists that identifies non-responders before treatment. A rigorous community-

based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA

patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_

Challenge). An open challenge framework enabled the comparative evaluation of predictions

developed by 73 research groups using the most comprehensive available data and covering a

wide range of state-of-the-art modelling methodologies. Despite a significant genetic

heritability estimate of treatment non-response trait (h2¼0.18, P value¼0.02), no

significant genetic contribution to prediction accuracy is observed. Results formally confirm

the expectations of the rheumatology community that SNP information does not significantly

improve predictive performance relative to standard clinical traits, thereby justifying a

refocusing of future efforts on collection of other data.
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R
heumatoid arthritis (RA) is a chronic inflammatory
autoimmune disorder affecting synovial joints, which often
leads to organ system disorders and increased mortality.

It is the most common autoimmune disorder, affecting B1% of
the population worldwide1. RA is treated in part with disease-
modifying anti-rheumatic drugs, including those that block the
inflammatory cytokine, tumour necrosis factor-a (anti-TNF
therapy). While anti-TNF treatment is effective in reducing
disease progression, response is variable with nearly one-third of
RA patients failing to enter clinical remission2–4. No substantive
methodology exists that can be used to a priori identify anti-TNF
non-responders5. Technological advances in DNA genotyping
and sequencing have afforded the opportunity to assess the
contribution of genetic variation to heterogeneity in anti-TNF
response to therapy. Evidence from association analyses6,7

and theoretical heritability estimates suggested that algorithms
focusing on genetic variation may be predictive of non-response.
Genetic biomarkers provide a compelling opportunity to perform
simple tests with high-potential impact on clinical care. Although
genetic information has not been found to provide clinically
relevant predictions in many cases8–10, the high-potential impact
of successful genetic biomarkers and their potential to provide
biological insights continues to inspire research inquiries in many
fields including anti-TNF response. To this aim, we perform a
community-based empirical assessment of the contribution
of common single-nucleotide polymorphism (SNP) data to
predictions of anti-TNF treatment response in RA patients to
formally assess their utility for clinical application. Using the
most comprehensive data set currently available, which we
demonstrate is suitably powered to develop clinically actionable
predictors, we draw on the expertise of hundreds of researchers
world-wide, who collectively submit thousands of models
predicting anti-TNF response. While the researchers are able to
build predictive models that perform significantly better than
random, formal evaluation from the best-performing teams show
that common SNP variants do not meaningfully contribute to
model performance within this study.

Results
Study design and challenge parameters. This study was
performed as an open analytical challenge using the DREAM
framework11–14 (DREAM Challenges website; www.dreamchallenges.
org) as a mechanism to test predictions developed across a variety of
state-of-the-art methodologies. In this manner, we were able to
evaluate the accuracy of predictive models developed by dozens of
research groups across a wide spectrum of modelling approaches.
Challenge participants were provided with SNP data collected on
2,706 anti-TNF-treated RA patients6 (Supplementary Table 1) with
which to develop predictive models of disease-modulating treatment
response where treatment efficacy was measured using (a) the
absolute change in disease activity score in 28 joints15 (DAS28)

following 3–6 months of anti-TNF treatment and (b) categorical
non-response as defined by EULAR-response criteria16. EULAR
response is calculated based on the pre- and post-treatment DAS28
and is widely used in clinical research and practice. Models were
evaluated based on the predictive accuracy in a held-out test data set
containing 591 anti-TNF-treated RA patients from a separate cohort
(Supplementary Table 1). This represents the most comprehensive set
of data available to address this question.

Statistical assessment of study power. The feasibility of
developing SNP-based predictive models given this collection of
data was determined in three steps. First, the genetic contribution
to overall variance in treatment efficacy was estimated.
Significant SNP-heritability estimates were identified via variance
component modelling17,18 of common SNPs (minor allele
frequency (MAF)Z0.01) within the primary cohort consisting
of 2,706 patients from 13 studies6 (SNP-h2¼ 0.18, P value¼ 0.02,
Table 1). Heritability estimates were strongest in the subset of
patients treated with anti-TNF monoclonal antibodies (MABs)
relative to those treated with the circulating biologic, enteracept
(Table 1). These heritability estimates are similar to those
reported for other treatment response traits19 and of sufficient
effect size to consider the use of predictive modelling methods to
identify polygenic predictors of anti-TNF treatment efficacy20,21.
As the second step, the proportion of SNP heritability that must
be represented in a predictive model to provide a clinically
actionable predictor was estimated. Although the definition of an
actionable predictor is highly dependent on clinical context,
we set a lower bound, as defined by the area under the receiver
operating characteristic curve (AUROC), of 0.75. Maximum
AUROC achievable was calculated for the primary endpoint used
in the challenge, categorical non-response based on the EULAR
criteria and assuming the above estimated SNP heritability. Given
these assumptions, the achievable AUROC was estimated across a
set of predictive models as a function of the percent heritability
explained by the model22. These estimates indicated that clinically
actionable predictors would require predictive models to explain
at least 55% of the heritable component of treatment efficacy
(Supplementary Table 2). As the third and final step, statistical
power to build such predictive models was estimated given these
data. Statistical power was defined as the expected percent
heritability that can be explained by a given model. This measure
was computed over a range of models representing common risk
variants (MAFZ0.01). In each case, models were consistent
with the estimated SNP-h2 and non-response prevalence rate
calculated within these data and assumed a fixed number of loci
of equal effect8 (Supplementary Fig. 1a). Because previous
analyses of these data did not reveal strongly associated
individual loci, and ultimately many teams limit multiple
testing through biologically informed feature selection23 (see
Supplementary Table 3), this analysis was performed across a

Table 1 | Heritability estimates within the Primary Cohort.

Proportion of genome SNP heritability (P value)

Gene list N genes SNPs Mb All samples InfliximabþAdalimumab

Whole genome — 1 1 0.18 (0.02) 0.36 (0.005)
Drug metabolism* 215 0.07 0.10 0.05 (0.3) 0.04 (0.09)
Immune-relatedw 6,001 0.65 0.58 0.07 (0.2) 0.21 (0.01)
TNF/TNFR pathwayz 333 0.11 0.14 0.05 (0.04) 0.02 (0.3)
CD84 coexpression (ImmGen) 200 0.08 0.11 0 (0.5) 0 (0.5)

SNP, single-nucleotide polymorphism; TNF, tumour necrosis factor; TNFR, TNF-receptor.
*Affymetrix DMET chip SNPs.
wimmport.niaid.nih.gov.
zPPI and coexpressed genes (eQTLs).
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series of significance thresholds, ranging from that appropriate
for genome-wide association (5e� 8) to that appropriate for
testing 100 independent loci (5e� 4). These estimates indicated
that this study was powered to develop clinically actionable
predictive models in the case where the observed SNP heritability
was explained by tens of risk loci. In this range, dimensionality
reduction through literature or database curation could
extract information even when strong, genome-wide significant
associations are not observed. More sophisticated simulations
using similar sample and disease characteristics suggest that the
power estimates presented here may be conservative8. Despite
smaller sample sizes, we estimate slightly increased power to build
clinically meaningful predictors in the subset of patients treated
with anti-TNF MABs. While the number of true underlying loci
that contribute to genetic risk for anti-TNF response is unknown,
an assumption of tens of loci is supported by observations of
small numbers of loci associated with other treatment response
traits24–26 and has the added advantage of approaching the
number of loci that are practical to include on a clinical
diagnostic panel. It should also be noted that our power
calculations require a fixed level of statistical significance be
achieved for model inclusion of SNP predictors, however, the
inclusion requirements for many machine learning approaches
are not as strict and, as such, these methods may be better
powered23.

Open challenge study design. The open challenge was designed
to assess genetic contribution to prediction of anti-TNF response
in RA patients using whole-genome SNP data derived from anti-
TNF-treated RA patients (Fig. 1a, Supplementary Table 1)6,27.
The question of anti-TNF treatment response was addressed in
two ways. The primary endpoint used in the challenge was the
classification of response to anti-TNF therapy as defined by
EULAR-response criteria16 (Classification subchallenge).
Participants were also invited to directly predict DDAS28 as a
continuous measure (Quantitative subchallenge). In total, 242
individuals representing 30 countries and 4 continents registered
to participate in this challenge. Challenge participants were
invited to train models using a data set containing whole-genome
SNP data, age, sex, anti-TNF therapy, concomitant methotrexate
treatment and baseline DAS28 in a subset of 2,031 individuals
(Fig. 1b, Supplementary Table 1 and see the ‘Methods’ section)6.
SNP data were provided as imputed (HapMap phase 2) genotype
probabilities and dosages, as well as directly assayed variants for
participant use.

Participants were provided with a leaderboard with real-time
feedback, which evaluated the performance of their predictions
in the remaining 675 individuals. To reduce the potential for
overfitting or reverse-engineering of treatment outcomes from
the leaderboard, each team was limited to 100 leaderboard
submissions. Over the course of the 16-week training period,
73 teams submitted a total of 4,874 predictions for evaluation on
the leaderboard data. Upon completion of the training period,
teams were allowed up to two final submissions per subchallenge
and final evaluation of algorithms was performed relative to a
separate test data set consisting of data collected from 591 RA
patients in the CORRONA CERTAIN27 study. Comparison with
an independent, blinded test data set reduced the contribution
to estimated accuracy of overfitting to the training data set,
as indicated by comparing predictive performance between
leaderboard and test data predictions for both the area under
precision-recall curves (AUPRs) and AUROCs (Supplementary
Fig. 2). Anti-TNF non-response differed slightly between the
training and test data sets (21.7 and 35.7%, respectively), likely
due to differences in inclusion criteria in the two cohorts,
although demographic data were similar between the two
(Supplementary Table 1). Similar methods were used to quality
control (QC) and impute genotypes in both cohorts (see the
‘Methods’ section for details). Participants remained blinded to
outcomes from both the leaderboard and test data sets
throughout the experiment. Harmonized data from all cohorts
are publicly available as a resource for use by the research
community (doi:10.7303/syn3280809).

Performance across predictive modelling methodologies. For
the classification subchallenge, 27 final submissions were received
from 15 teams and these were scored using both AUROC and
AUPR. Overall rank for each submission was determined as the
average of the AUROC rank and the AUPR rank among all valid
submissions. AUROC and AUPR were interpolated in the case of
binary classifications or in the case of tied predictions28. Of
27 submissions, 11 performed significantly better than random
for both AUPR and AUROC after Bonferroni correction for
multiple submissions. The AUPR of all submissions ranged from
0.345 to 0.510 (null expectation 0.359), and the AUROC ranged
from 0.471 to 0.624 (null expectation 0.5). Using bootstrap
analysis of submission ranks (Fig. 2a), we determined that the
top two submissions performed robustly better than all
remaining solutions (Wilcoxon signed-rank test of bootstraps
P value¼ 5e� 34 and 1e� 66, relative to the third ranked
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Figure 1 | Challenge schematic. (a) This analysis was performed in two phases. In the Competitive phase, an open competition was performed to formally

evaluate and identify the best models in the world to address this research question. In all, 73 teams representing 242 registered participants joined the

challenge. Organizers evaluated model performance for test set predictions submitted by 17 teams. The 8 best-performing teams were invited to join the

collaborative phase. In this phase, a collectively designed experiment was developed, in which each team independently performed analyses and challenge

organizers performed a combined analysis. (b) Two data sets were used in the analysis: the Discovery cohort and the CORRONA CERTAIN study.

Participants were provided with 2.5M imputed SNP genotypesþ 5 covariates from two cohorts and with the response trait for 2,031 individuals in the

Discovery cohort (‘Training Set’). At the completion of the 16-week training period, participants were required to submit a final submission containing

predictions of response traits in a completely independent data set, the CORRONA CERTAIN study (‘Validation Test Set’).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12460 ARTICLE

NATURE COMMUNICATIONS | 7:12460 | DOI: 10.1038/ncomms12460 | www.nature.com/naturecommunications 3

http://dx.doi.org/doi:10.7303/syn3280809
http://www.nature.com/naturecommunications


submission, respectively) but were not distinct from one another
(P value¼ 0.44). These submissions had AUPR of 0.5099 and
0.5071 and AUROC of 0.6152 and 0.6237, respectively. Both of
the top-performing submissions were generated using Gaussian
Process Regression (GPR)29 models. Team Guanlab selected SNP
predictors based on analysis of the training data and previous
analyses described in the literature and, using those features,
applied a GPR model to predict non-response classification
directly. Team SBI_Lab selected SNP predictors based entirely on
analysis of the training data, applied a GPR model to predict
DDAS28, and then refactored these predictions into classification
weights. The code and provenance for the winning algorithms
have been catalogued and made available for reuse through the
challenge website (see ‘Team Guanlab’ and ‘Team SBI_Lab’ in the
Supplementary Notes for more details).

For the quantitative subchallenge, 28 final models from 17
teams were received and performance was evaluated based on the
correlation between predicted and observed DDAS28 (observed
range: r¼ 0.393 to � 0.356). Of these, 18 submissions performed
significantly better than random at a Bonferroni-corrected
P value threshold of 0.05 (r¼ 0.393 to 0.208). The top-performing
submission, provided by Team Guanlab, was robustly better than
all remaining solutions (Wilcoxon’s signed-rank test of bootstraps
P value¼ 2e� 32 relative to the second ranked submission,
Supplementary Fig. 3) and used a similar GPR model to predict
DDAS28 as described above (see ‘Team Guanlab’ in the
Supplementary Notes for more details).

Genetic contribution to model performance. Following the
completion of the open challenge, the eight teams with the best
predictive performances (seven from each subchallenge) were

invited to join challenge organizers to perform a formalized
evaluation of the contribution of genetic information to model
performance across the solution space captured by these diverse
methods. Challenge participants and organizers worked together
in a collaborative manner to design and implement analyses to
address this question. To ensure this analysis was performed
across the best possible methods, teams were invited to continue
to refine their individual algorithms based on the information
shared across teams. Crosstalk was promoted through a webinar
series for the discussion of methodological considerations
between challenge teams, organizers and external experts. In
addition, the eight teams were divided into three groups where
intra-group discussions were encouraged. In general, we observed
that teams altered their strategies regarding knowledge mining
and feature selection in response to these efforts, but did not
alter machine learning algorithms (Supplementary Table 3).
Collaborative Phase predictions did not perform significantly
better than Open Challenge predictions among collaborative
phase participants (� 0.017 DAUPR and � 0.011 DAUROC
for classification subchallenge, P value¼ 0.270 and 0.265,
respectively), further supporting the hypothesis that the overall
genetic contribution to predictive performance was negligible.

To explicitly test the ability of modelling techniques to detect
weak genetic contribution, we first examined the contribution of
feature selection to model performance. Most teams had used a
combination of knowledge-based and data-driven evidence to
perform dimensionality reduction in their model development.
To approximate the null distribution of the genetic models, each
of the 8 teams trained 100 models using an equivalent number of
randomly sampled SNPs relative to their best-performing
model30. For 5 of 7 classification algorithms, models using
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Figure 2 | Model performance. Competitive Phase: (a) Bootstrap distributions for each of the 27 models submitted to the classification subchallenge

ordered by overall rank. The top 11 models were significantly better than random at Bonferroni-corrected P valueo0.05. Collaborative Phase:

(b) Distributions of the models built with randomly sampled SNPs, by team, along with scores for their full model, containing data-driven SNP, as well as

clinical variable selection, (pink) and clinical model, which contains clinical variables but excludes SNP data (blue). For 5 of 7 teams, the full models are

nominally significantly better relative to the random SNP models for AUPR, AUROC or both (enrichment P value 4.2e� 5). (c) AUPR and AUROC of each

collaborative phase team’s full model, containing SNP and clinical predictors, versus their clinical model, which does not consider SNP predictors. There was

no significant difference in either metric between models developed in the presence or absence of genetic information (paired t-test P value¼0.85, 0.82,

for AUPR and AUROC, respectively).
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knowledge-mined SNP selection significantly outperformed
models using random SNPs for AUPR, AUROC or both at a
nominal P valueo0.05 (one-sided Kolmogorov–Smirnov test for
enrichment of P values versus uniform P value¼ 4.2e� 05;
Fig. 2b). Although there is uncertainty in the estimates of
individual-algorithm enrichment due to the relatively small
numbers of resamplings that were performed, a sensitivity
analysis indicated that this experiment-wide significant
enrichment was robust to these uncertainties (enrichment
P value¼ 0.002 at the 99.87% upper confidence bound of
estimated P values). This suggested that for these models there
was a non-zero contribution of genetic information to treatment
effect. We next performed a pairwise comparison to directly
assess the practical contribution of genetic information to
model performance. Each team developed a model built in the
absence of genetic information (clinical model) against which
we compared their best model incorporating SNP data (full
model). Clinical and demographic covariates were available
for incorporation in both cases. Pairwise comparison across
models demonstrated no statistical difference (paired t-test
P value¼ 0.85, 0.82, for classification AUPR and AUROC,
respectively, and P value¼ 0.65 for continuous prediction
correlation; Fig. 2c, Supplementary Fig. 4), indicating that the
contribution of SNP data to the prediction of treatment effect was
not of sufficient magnitude to provide a detectable contribution
to overall predictive performance. In further support of this
conclusion, we note that the top-performing regression-based
model by Team Outliers did not include any contribution from
genetic information—genetic information was provided as an
input but regularized out as part of the parameter selection
process (see Supplementary Information). Despite the fact that
heritability estimates were highest in the MAB therapies
(adalimumab and infliximab), and that the most effective
approaches explicitly modelled drug-specific genetic signal,
there was no evidence that the genetic information contributed
substantially for any drug-specific subset of the data (Bonferroni-
corrected paired t-test P value for classification AUPR¼ 1.0, 1.0,
1.0, 0.29, 1.0 for adalimumab, certolizumab, etanercept,
infliximab and the combined set of all MAB therapies,
respectively, and for AUROC¼ 1.0, 1.0, 1.0, 0.59, 1.0,
respectively).

The use of a diverse set of methodological approaches across
teams provided the opportunity to test whether an aggregate
of the individual approaches that leveraged their diversity/
complementarity may boost the overall genetic contribution to
predictions. Specifically, ensemble models were learned from
individual predictions submitted to the classification subchallenge
using a supervised approach31. These models were trained using
leave-one-out cross-validated predictions generated on the
original training set using the individual methods, and, as with
individual submissions, analysed in a blinded manner using the
test data. Two ensemble models were developed for the
classification subchallenge using the stacking method32,33, one
built using team predictions submitted during the open challenge
phase (AUPR¼ 0.5228, AUROC¼ 0.622) and the second built
using team predictions submitted during the collaborative phase
(AUPR¼ 0.5209, AUROC¼ 0.6168). Performance of these
supervised ensemble models was compared with performance
of the individual team model with the best overall performance—
the model submitted in the collaborative phase by Team Outliers
that did not contain any genetic information (Supplementary
Fig. 5). The ensemble models performed incrementally better
than this model (differences¼ 0.005 and 0.0006 and boostrap
P values¼ 0.32 and 0.46 for AUPR and AUROC, respectively).
This indicates that even ensembles that leverage complementary
information among the individual predictions could not boost the

ability to robustly predict anti-TNF response using genetic
information.

Discussion
The RA Responder DREAM challenge performed a community-
based open assessment of the contribution of SNP genotypes to
predict disease-modulating response to anti-TNF treatment in
RA patients, and found that SNPs did not meaningfully
contribute to the prediction of treatment response above the
available clinical predictors (sex, age, anti-TNF drug name and
methotrexate use). Given the negative nature of the findings in
this report, it is important to clearly frame these findings within
the constraints of the problem that was addressed. This study was
designed to assess the ability to develop clinically actionable
predictors using common SNP variants in the case where the
genetic contribution to treatment efficacy is represented by tens
of loci. Thorough analysis by dozens of researchers has shown
that current predictive algorithms, as well as their ensembles, are
not able to produce such predictors despite the estimation of a
significant heritability for this trait. In fact, these researchers were
not able to detect any genetic contribution to predictions, even in
the subset of data for which heritability and power are predicted
to be the highest. This may reflect the complex nature of genetic
contribution across loci, the absence of individual, strongly
associated common variants, or the presence of non-genetic
sources of heterogeneity across individuals8–10. These findings do
not provide information about the ability to use genetic data for
predictive modelling of anti-TNF treatment efficacy in other cases
such as when: (1) the true number of risk loci is on the order of
hundreds, or (2) the heritability is better explained by variants not
assayed or tagged by variants in this study, including rare variants
or CNVs. Given the sample sizes required to identify loci
when the number of risk loci is on the order of hundreds
(Supplementary Fig. 1b), and the general challenge in explaining
estimated heritability in complex traits even with large
cohorts34–38, this does suggest that future efforts may be better
spent in identifying biomarkers based on data modalities that
better encapsulate both genetic and non-genetic contributions to
treatment efficacy.

Although these genetic data did not provide a meaningful
contribution to the predictions in this study, the methods used in
this analysis were able to leverage the small set of available clinical
features to develop a prediction that performed significantly
better than random. These results suggest that future research
efforts focused on the incorporation of a richer set of clinical
information—including seropositivity, treatment compliance
and disease duration—may provide opportunity to leverage
these methods in clinically meaningful ways. In addition,
the identification of data modalities that are more effective
than genetics in capturing heterogeneity in RA disease
progression—whether clinical, molecular or other—may also
improve predictive performance.

This study demonstrates that a formalized evaluation
of a scientific question across a wide solution space can be
effectively accomplished by combining resources—data and
methodologies—across an open community of interested
researchers. In research areas of high-potential impact but
uncertain likelihood of success, such as described here, this
community-wide approach provides an opportunity to build
consensus regarding research outcomes to guide future efforts
within that field. In this context, positive outcomes can highlight
a rich strategy for future enquiry, while negative results can
provide strong evidence in support of adjusting future paths of
scientific exploration. Since the evidence that a task is implausible
mounts with the number of failed attempts at solving it, making
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the case of implausibility requires the active contribution of
multiple research groups. In this study, we demonstrate that
formalized evaluation across a community of researchers
provided a rapid mechanism for transparent assessment of
current capabilities to assess the contribution of genetic
information to prediction of anti-TNF response in RA patients.

Methods
Data sets. Two separate data sets were provided to participants to train and test
the predictive models, respectively (Supplementary Table 1). In the case of the test
data, only predictor variables were released, and the teams remained blinded to the
response variables. The training data consisted of a previously published collection
of anti-TNF-treated patients (n¼ 2,706) of European ancestry, compiled from 13
collections6, of which the response variables from 675 patients were held-out as a
leaderboard test set. All patients met 1987 ACR criteria for RA, or were diagnosed
by a board-certified rheumatologist and were required to have at least moderate
DAS28 (ref. 15 at baseline (DAS2843.2). Available clinical and demographic data
included DAS28 at baseline and at least one time point after treatment, sex, age,
anti-TNF drug name and methotrexate use. Follow-up DAS28 was measured 3–12
months after initiating anti-TNF therapy, though precise duration of treatment was
not available. Genotypes for each sample were analysed for quality control (QC) for
sample and marker missingness, Hardy–Weinberg disequlibrium, relatedness and
population outliers, and imputed to HapMap Phase 2 (release 22) as previously
described6. We note that although this data set does not represent the full spectrum
of patient information that may be utilized within a clinical setting to inform
treatment—including synovial tissue and novel soluble biomarkers like MRP8/14
levels4,39,40, it did present sufficient data to explicitly assess the contribution of
genetics to prediction.

The final test set was derived from a subset of patients enroled in the
CORRONA CERTAIN study27. CERTAIN is a prospective, non-randomized
comparative effectiveness study of 2,804 adult patients with RA, having at least
moderate disease activity defined by a clinical disease activity index score 410 who
are starting or switching biologic agents. DAS28 was provided at baseline and
3-month follow-up. At the time of challenge launch, 723 subjects had initiated
anti-TNF therapy and had a 3-month follow-up visit. Of these patients, 57.4% were
previously naive to biologics. Genotypes were generated on the Illumina Infinium
HumanCoreExome array and imputed to HapMap Phase 2 (release 22) using
IMPUTE2 (ref. 41). Before imputation, genotype QC included filtering individuals
with 45% missing data, and filtering SNPs with 41% missing data, MAFo1%
and w2-test of Hardy-Weinberg equilibrium pHWEo10-5. Sex was inferred based
on the X-chromosome genotypes using PLINK42, and all samples matched with
respect to reported sex. One parent-offspring relationship was identified in the
data, but was kept in the test set. While data for all 723 were released to
participants, 93 patients were excluded for the purposes of scoring because their
genotyping data were not consistent with European ancestry as inferred by
EIGENSTRAT43. In addition, a subset of patients in the test data set were treated
with anti-TNF drugs that were not represented in the training data set: golimumab
and certolizumab. The 39 patients receiving golimumab were excluded because this
drug was not represented in the training data and predictions showed that
participants were unable to successfully predict response in these subjects. In
contrast, prediction in certolizumab-treated patients was similar to prediction in
the remaining three drugs and so these data were included in the final test set.

Two ancillary data sets were made available for participant use. The first
measured TNFa protein level in HapMap cell lines44. The second included
blood RNA-seq data and genotypes for 60 RA patients from the Arthritis
Foundation-sponsored Arthritis Internet Registry, 30 of whom displayed high
inflammatory levels and 30 of whom displayed low inflammatory levels.
Inflammatory levels were assessed using blood concentrations of C-reactive protein
(CRP), and elevated disease was defined as CRP40.8 mg dl� 1, while low disease
activity was defined as CRPo0.1 mg dl� 1. In addition to CRP levels, rheumatoid
factor antibody levels and cyclic citrullinated peptide levels were also assayed.
Genotypes were assayed on the Illumina HumanOmniExpressExome array.

Power calculations. For combinations of a range of risk allele frequency,
P¼ (0.01, 0.02, 0.03, y, 0.99), and relative risk, l¼ (1.1, 1.11, 1.12, y, 2.4),
we computed the number, n, of such loci required to explain a heritability of 0.18,
as estimated for this trait, (equation (3) in the study by Wray et al.8), and the power
assuming a multiplicative model using the GeneticsDesign Bioconductor
package45, given a trait prevalence, K¼ 0.217, as estimated from the discovery
cohort. The expected heritability explained was estimated as the median power
over all combinations of p and l for which n rounded to a given value.

The AUROC corresponding to various proportions of heritability explained was
computed using equation (3) in the study by Wray et al.22 after converting our
estimated heritability to the liability scale. In addition, we estimated the proportion
of the variance explained by clinical variables using the AUROC for the best clinical
model from the collaborative phase (equation (4) in the study by Wray et al.22) and
computed the AUROC corresponding to various proportions of heritability
explained assuming independence between the clinical and genetic components.

Scoring methods. For the classification subchallenge, teams were asked to submit
an ordered list of patients ranked according to the predicted response to therapy.
Special treatment was given to the computation of the curve statistics when the
order was ambiguous such as in the case in the case of ties or binary predictions,
in which case an average across all possible consistent solutions was used28.
The average of the rank of the AUPR and AUROC was used to rank solutions.

For the quantitative subchallenge, teams were asked to submit predicted
DDAS28, and the Pearson’s correlation between the predicted and actual DDAS28
was used to score submissions.

Competitive phase of the challenge. The challenge was open to all individuals
who agreed to the DREAM terms of use and obtained access to the challenge data
by certifying their compliance with the data terms of use. The training and ancillary
data were released for use on 10 February 2014. The leaderboards opened on
5 March, at which time participants were able to test their models in real-time
against a held-out portion of the training data set. The prediction variables of the
test data set were released to participants on 8 May and submission queues for final
submissions were open between 21 May and 4 June. Only the final two submissions
per team per subchallenge were scored. Participants who did not have enough
computational resources in their home institutions were offered the option to use
an IBM z-Enterprise cloud, with two virtual machines running Linux servers, one
with 20 processors, 242 GB memory, 9 TB storage space and the other with 12
processors, 128 GB memory and 1 TB of storage space. Cloud users could access the
Challenge data directly through the IBM system.

Evaluation of submissions. Predictions were evaluated using two data sets: 675
individuals from the training cohort (leaderboard test set) and all individuals from
the CORRONA CERTAIN data (final test set). In both cases, response variables
were withheld from participants. Participants were allowed 100 submissions to
the classification subchallenge leaderboard and unlimited submissions to the
quantitative subchallenge leaderboard throughout the competitive phase of the
competition, and were provided near-instant results. Participants were allowed two
final submissions per subchallenge and scores were revealed after the submission
deadline. A permutation test was used to assess whether the classifications or
DDAS28 quantitative predictions were better than expected at random using a
one-sided P value. To assess the robustness of the relative ranking of predictions,
1,000 bootstraps were performed by sampling subjects with replacement. Within
each bootstrap iteration, evaluation scores were computed for each submission,
along with the within-iteration rank. A prediction was deemed ‘robustly’ better
than another if the Wilcoxon’s signed-rank test of the 1000 bootstrap iteration
estimates was significant with P valueo0.05. While this is not the same as strict
statistical significance, it was the criteria we used to differentiate models given the
relatively small improvements from one to another.

Development and scoring in the collaborative phase. One of the aims of
DREAM Challenges is to foster collaborative research. As such, the collaborative
phase was designed to foster cooperation between the best-performing teams in
the competitive phase. Teams came together to develop research questions and
analytical strategies to answer specific questions related to the ability to predict
non-response to anti-TNF treatment. Each team submitted a number of
classifications/predictions and/or sets of classifications/predictions that were
designed to be able to answer questions about the degree to which genetic data
were contributing to the models, and the classifications were scored and analysed
across teams by the challenge organizers. To compare across methods and
approaches, we asked the collaborative phase participants to submit classifications/
predictions using their own knowledge- and data-mined SNP lists, which they
refined from the competitive phase after peer review from fellow participants. In
addition, they were asked to submit a classification/prediction, which used only
clinical predictors and did not include genetic predictors. We also asked the
participants to submit 100 sets of classifications/predictions in which the SNPs
used as potential predictors were randomly sampled from the genome and matched
the number of SNPs in their genetic model. Eight teams participated in the
collaborative phase, seven in each subchallenge. Ranked results for the genetic
models are shown in Supplementary Fig. 5.

Ensemble classifications. The goal of ensemble learning was to aggregate the
classifications submitted by individual teams to the classification subchallenge,
including 6 from the Competitive Phase and 7 from the Collaborative Phase, by
effectively leveraging the consensus as well as diversity among these predictions.
We focused on learning heterogeneous ensembles31, which are capable of
aggregating classifications from a diverse set of potentially unrelated base
classifiers, as is the case with the submissions to this subchallenge. Specifically, we
followed the stacking methodology32,33, which involves learning a meta-classifier
(second level predictor) on top of the base classifications. This methodology was
applied to the training set classifications generated through a leave-one-out cross-
validation procedure applied to the training set for the initial ensemble learning. To
address the potential calibration issue in this task46, we investigated using the raw
base classifications and the output of two other normalization procedures—z-score
(mean¼ 0, s.d.¼ 1) and Scale0–1 (maximum¼ 1, minimum¼ 0)—applied to the
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raw base classifications. Next, sixteen different classification algorithms
(Supplementary Table 4) were used to train ensemble models from each of the
above normalized versions of the base classifications. The implementations of these
algorithms were obtained from the Weka machine learning suite47, and their
default parameters were used.

Supplementary Figure 6 shows the performance of different combinations of
normalization and classification methods on the leaderboard test set in terms of (a)
AUPR, (b) AUROC and (c) the overall rank. Several observations can be made
from these results. First, the ensemble learned with normalization using z-score
and subsequent learning of a Naive Bayes classifier that uses kernelized probability
distribution functions48 produced the best aggregate performance on the
leaderboard test set (AUROC¼ 0.7569, AUPR¼ 0.49), indicating the conditional
independence of the base classifications and the non-normality of their underlying
distributions. In general, normalization (either z-score or Scale0–1) improved the
performance for 14, 14 and 13 of the 16 classifiers examined in terms of PR, ROC
and overall rank, respectively, thus indicating the importance of effective
calibration in such ensemble learning tasks. Of these, 10, 9 and 7 classifiers,
including NaiveBayes_kdf, saw the best performance due to the use of z-score
normalization, thus giving this normalization method an edge over Scale0–1.

On the basis of the conclusions above, we applied the ensemble model trained
using z-score and NaiveBayes_kdf to the individual team classifications submitted
for the CORRONA CERTAIN test set in the competitive and collaborative phases.
The ensemble of the competitive phase (AUPR¼ 0.5228, AUROC¼ 0.622)
performed better than each of the individual classifications and slightly better than
the ensemble of the collaborative phase (AUPR¼ 0.5209, AUROC¼ 0.6168).
However, these improvements were not statistically significant.

Data availability. Data use within the scope of this challenge was performed
with the approval of an internal review board for all data sets. All data used for
the challenge are available through the Synapse repository (syn3280809,
doi:10.7303/syn3280809).
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A Coruña 15706 , Spain; 55Grupo de Medicina Xenómica, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de
Santiago de Compostela, Santiago de Compostela, A Coruña 15782, Spain; 56Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061,
USA; 57Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK; 58Molecular and Cellular Imaging Center—OARDC, The Ohio State
University, Columbus, Ohio 43210, USA; 59Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12460 ARTICLE

NATURE COMMUNICATIONS | 7:12460 | DOI: 10.1038/ncomms12460 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications

	title_link
	Results
	Study design and challenge parameters
	Statistical assessment of study power

	Table 1 
	Open challenge study design
	Performance across predictive modelling methodologies

	Figure™1Challenge schematic.(a) This analysis was performed in two phases. In the Competitive phase, an open competition was performed to formally evaluate and identify the best models in the world to address this research question. In all, 73 teams repre
	Genetic contribution to model performance

	Figure™2Model performance.Competitive Phase: (a) Bootstrap distributions for each of the 27 models submitted to the classification subchallenge ordered by overall rank. The top 11 models were significantly better than random at Bonferroni-corrected P valu
	Discussion
	Methods
	Data sets
	Power calculations
	Scoring methods
	Competitive phase of the challenge
	Evaluation of submissions
	Development and scoring in the collaborative phase
	Ensemble classifications
	Data availability

	GibofskyA.Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritisAm. J. Manag. Care18S295S3022012McInnesI. B.SchettG.The pathogenesis of rheumatoid arthritisN. Engl. J. Med.365220522192011VincentF. B.Antidrug antibodies (ADAb) to 
	G.P. is partially supported by NIH grant# R01GM114434 and an IBM faculty award. E.S. is funded by NIH R01GM105857. The Corrona CERTAIN study is sponsored by Corrona, LLC with support from the Agency for Healthcare Research and Quality (R01HS018517). The m
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




