191 research outputs found
Scalar and Spinor Particles with Low Binding Energy in the Strong Stationary Magnetic Field Studied by Means of Two-and Three-Dimensional Models
On the basis of analytic solutions of Schrodinger and Pauli equations for a
uniform magnetic field and a single attractive -potential the
equations for the bound one-active electron states are discussed. It is vary
important that ground electron states in the magnetic field essentially
different from the analog state of spin-0 particles that binding energy has
been intensively studied at more then forty years ago. We show that binding
energy equations for spin-1/2 particles can be obtained without using of a
well-known language of boundary conditions in the model of -potential
that has been developed in pioneering works. Obtained equations are used for
the analytically calculation of the energy level displacements, which
demonstrate nonlinear dependencies on field intensities. It is shown that in a
case of the weak intensity a magnetic field indeed plays a stabilizing role in
considering systems. However the strong magnetic field shows the opposite
action. We are expected that these properties can be of importance for real
quantum mechanical fermionic systems in two- and three-dimensional cases.Comment: 18 page
The Energy Level Shifts, Wave Functions and the Probability Current Distributions for the Bound Scalar and Spinor Particles Moving in a Uniform Magnetic Field
We discuss the equations for the bound one-active electron states based on
the analytic solutions of the Schrodinger and Pauli equations for a uniform
magnetic field and a single attractive -potential. It is vary
important that ground electron states in the magnetic field differ essentially
from the analogous state of spin-0 particles, whose binding energy was
intensively studied more than forty years ago. We show that binding energy
equations for spin-1/2 particles can be obtained without using the language of
boundary conditions in the -potential model developed in pioneering
works. We use the obtained equations to calculate the energy level
displacements analytically and demonstrate nonlinear dependencies on field
intensity. We show that the magnetic field indeed plays a stabilizing role in
considered systems in a case of the weak intensity, but the opposite occurs in
the case of strong intensity. These properties may be important for real
quantum mechanical fermionic systems in two and three dimensions. We also
analyze the exact solution of the Pauli equation for an electron moving in the
potential field determined by the three-dimensional -well in the
presence of a strong magnetic field. We obtain asymptotic expressions for this
solution for different values of the problem parameters. In addition, we
consider electron probability currents and their dependence on the magnetic
field. We show that including the spin in the framework of the nonrelativistic
approach allows correctly taking the effect of the magnetic field on the
electric current into account. The obtained dependencies of the current
distribution, which is an experimentally observable quantity, can be manifested
directly in scattering processes, for example.Comment: 31 pages, 10 figure
Sparse p-Adic Data Coding for Computationally Efficient and Effective Big Data Analytics
We develop the theory and practical implementation of p-adic sparse coding of data. Rather than the standard, sparsifying criterion that uses the pseudo-norm, we use the p-adic
norm.We require that the hierarchy or tree be node-ranked, as is standard practice in agglomerative and other hierarchical clustering, but not necessarily with decision trees. In order to structure the data, all computational processing operations are direct reading of the data, or are bounded by a constant number of direct readings of the data, implying linear computational time. Through p-adic sparse data coding, efficient storage results, and for bounded p-adic norm stored data, search and retrieval are constant time operations. Examples show the effectiveness of this new approach to content-driven encoding and displaying of data
Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets
This document is the Technical Design Report covering the two large
spectrometer magnets of the PANDA detector set-up. It shows the conceptual
design of the magnets and their anticipated performance. It precedes the tender
and procurement of the magnets and, hence, is subject to possible modifications
arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti
Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski,
Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy),
Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy
Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR
The possibility of measuring the proton electromagnetic form factors in the
time-like region at FAIR with the \PANDA detector is discussed. Detailed
simulations on signal efficiency for the annihilation of into a
lepton pair as well as for the most important background channels have been
performed. It is shown that precision measurements of the differential cross
section of the reaction can be obtained in a wide
angular and kinematical range. The individual determination of the moduli of
the electric and magnetic proton form factors will be possible up to a value of
momentum transfer squared of (GeV/c). The total cross section will be measured up to (GeV/c).
The results obtained from simulated events are compared to the existing data.
Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations,
4 tables, 9 figure
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
Simulation results for future measurements of electromagnetic proton form
factors at \PANDA (FAIR) within the PandaRoot software framework are reported.
The statistical precision with which the proton form factors can be determined
is estimated. The signal channel is studied on the basis
of two different but consistent procedures. The suppression of the main
background channel, , is studied.
Furthermore, the background versus signal efficiency, statistical and
systematical uncertainties on the extracted proton form factors are evaluated
using two different procedures. The results are consistent with those of a
previous simulation study using an older, simplified framework. However, a
slightly better precision is achieved in the PandaRoot study in a large range
of momentum transfer, assuming the nominal beam conditions and detector
performance
SalmoNet, an integrated network of ten Salmonella enterica strains reveals common and distinct pathways to host adaptation
Salmonella enterica is a prominent bacterial pathogen with implications on human and animal health. Salmonella serovars could be classified as gastro-intestinal or extra-intestinal. Genome-wide comparisons revealed that extra-intestinal strains are closer relatives of gastro-intestinal strains than to each other indicating a parallel evolution of this trait. Given the complexity of the differences, a systems-level comparison could reveal key mechanisms enabling extra-intestinal serovars to cause systemic infections. Accordingly, in this work, we introduce a unique resource, SalmoNet, which combines manual curation, high-throughput data and computational predictions to provide an integrated network for Salmonella at the metabolic, transcriptional regulatory and protein-protein interaction levels. SalmoNet provides the networks separately for five gastro-intestinal and five extra-intestinal strains. As a multi-layered, multi-strain database containing experimental data, SalmoNet is the first dedicated network resource for Salmonella. It comprehensively contains interactions between proteins encoded in Salmonella pathogenicity islands, as well as regulatory mechanisms of metabolic processes with the option to zoom-in and analyze the interactions at specific loci in more detail. Application of SalmoNet is not limited to strain comparisons as it also provides a Salmonella resource for biochemical network modeling, host-pathogen interaction studies, drug discovery, experimental validation of novel interactions, uncovering new pathological mechanisms from emergent properties and epidemiological studies. SalmoNet is available at http://salmonet.org
The Complete Genome Sequence of ‘Candidatus Liberibacter solanacearum’, the Bacterium Associated with Potato Zebra Chip Disease
Zebra Chip (ZC) is an emerging plant disease that causes aboveground decline of
potato shoots and generally results in unusable tubers. This disease has led to
multi-million dollar losses for growers in the central and western United States
over the past decade and impacts the livelihood of potato farmers in Mexico and
New Zealand. ZC is associated with ‘Candidatus
Liberibacter solanacearum’, a fastidious alpha-proteobacterium that is
transmitted by a phloem-feeding psyllid vector, Bactericera
cockerelli Sulc. Research on this disease has been hampered by a
lack of robust culture methods and paucity of genome sequence information for
‘Ca. L. solanacearum’. Here we present the
sequence of the 1.26 Mbp metagenome of ‘Ca. L.
solanacearum’, based on DNA isolated from potato psyllids. The coding
inventory of the ‘Ca. L. solanacearum’ genome was
analyzed and compared to related Rhizobiaceae to better
understand ‘Ca. L. solanacearum’ physiology and
identify potential targets to develop improved treatment strategies. This
analysis revealed a number of unique transporters and pathways, all potentially
contributing to ZC pathogenesis. Some of these factors may have been acquired
through horizontal gene transfer. Taxonomically, ‘Ca. L.
solanacearum’ is related to ‘Ca. L.
asiaticus’, a suspected causative agent of citrus huanglongbing, yet many
genome rearrangements and several gene gains/losses are evident when comparing
these two Liberibacter. species. Relative to ‘Ca. L.
asiaticus’, ‘Ca. L. solanacearum’ probably
has reduced capacity for nucleic acid modification, increased amino acid and
vitamin biosynthesis functionalities, and gained a high-affinity iron transport
system characteristic of several pathogenic microbes
Meta-omics approaches to understand and improve wastewater treatment systems
Biological treatment of wastewaters depends on microbial processes, usually carried out by mixed microbial communities. Environmental and operational factors can affect microorganisms and/or impact microbial community function, and this has repercussion in bioreactor performance. Novel high-throughput molecular methods (metagenomics, metatranscriptomics, metaproteomics, metabolomics) are providing detailed knowledge on the microorganisms governing wastewater treatment systems and on their metabolic capabilities. The genomes of uncultured microbes with key roles in wastewater treatment plants (WWTP), such as the polyphosphate-accumulating microorganism Candidatus Accumulibacter phosphatis, the nitrite oxidizer Candidatus Nitrospira defluvii or the anammox bacterium Candidatus Kuenenia stuttgartiensis are now available through metagenomic studies. Metagenomics allows to genetically characterize full-scale WWTP and provides information on the lifestyles and physiology of key microorganisms for wastewater treatment. Integrating metagenomic data of microorganisms with metatranscriptomic, metaproteomic and metabolomic information provides a better understanding of the microbial responses to perturbations or environmental variations. Data integration may allow the creation of predictive behavior models of wastewater ecosystems, which could help in an improved exploitation of microbial processes. This review discusses the impact of meta-omic approaches on the understanding of wastewater treatment processes, and the implications of these methods for the optimization and design of wastewater treatment bioreactors.Research was supported by the
Spanish Ministry of Education and Science (Contract Project
CTQ2007-64324 and CONSOLIDER-CSD 2007-00055) and
the Regional Government of Castilla y Leon (Ref. VA038A07).
Research of AJMS is supported by the European Research
Council (Grant 323009
- …