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Abstract Biological treatment of wastewaters

depends on microbial processes, usually carried out

by mixed microbial communities. Environmental and

operational factors can affect microorganisms and/or

impact microbial community function, and this has

repercussion in bioreactor performance. Novel high-

throughput molecular methods (metagenomics, meta-

transcriptomics, metaproteomics, metabolomics) are

providing detailed knowledge on the microorganisms

governing wastewater treatment systems and on their

metabolic capabilities. The genomes of uncultured

microbes with key roles in wastewater treatment

plants (WWTP), such as the polyphosphate-accumu-

lating microorganism ‘‘Candidatus Accumulibacter

phosphatis’’, the nitrite oxidizer ‘‘Candidatus Nitro-

spira defluvii’’ or the anammox bacterium ‘‘Candida-

tus Kuenenia stuttgartiensis’’ are now available

through metagenomic studies. Metagenomics allows

to genetically characterize full-scale WWTP and

provides information on the lifestyles and physiology

of key microorganisms for wastewater treatment.

Integrating metagenomic data of microorganisms with

metatranscriptomic, metaproteomic and metabolomic

information provides a better understanding of the

microbial responses to perturbations or environmental

variations. Data integration may allow the creation of

predictive behavior models of wastewater ecosystems,

which could help in an improved exploitation of

microbial processes. This review discusses the impact

of meta-omic approaches on the understanding of

wastewater treatment processes, and the implications

of these methods for the optimization and design of

wastewater treatment bioreactors.
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1 Introduction

Biological wastewater treatment relies on the great

catabolic potential of microorganisms, which can

transform or eliminate wastewater contaminants.

Aerobic processes include those in which microbes

use oxygen as electron acceptor for the oxidation of

organic or inorganic substrates. Several aerobic reac-

tor designs are currently applied, from the widely used

activated sludge (AS) system to more advanced

systems with improved sludge retention, such as

membrane reactors, biofilm reactors and aerobic

granular sludge reactors. In anaerobic processes,

organic matter is mineralized to CO2 and methane in

a reaction chain that comprises hydrolysis, acidoge-

nesis, acetogenesis, and methanogenesis steps (Schink

and Stams 2013). The upflow anaerobic sludge blanket

(UASB) reactor, which was developed in The Nether-

lands in the late 1970s, is one of the most used

anaerobic reactors for wastewater treatment. Other

common anaerobic reactor types are the expanded

granular sludge blanket (EGSB) reactor, the internal

circulation (IC) reactor, the static granular bed reactor

(SGBR) and anaerobic biofilm reactors. The combi-

nation of aerobic, anaerobic and anoxic processes

allows removal of not only organic carbon compounds

from wastewaters but also nitrogen and phosphate,

which is of utmost importance because the release of

these nutrients to the environment are main causers of

eutrophication in surface waters.

The key to achieve a successful exploitation of

biological wastewater treatment facilities lies in a

thorough understanding of the microbial communities

that catalyze the conversion of organic and inorganic

compounds (Daims et al. 2006; He and McMahon

2011; Jenkins 2008). Cultivation methods can give

important insights regarding the physiological prop-

erties of microorganisms involved in e.g. nitrification,

denitrification, phosphorus removal, sulfate reduction,

methanogenesis, xenobiotic remediation. Whole gen-

ome sequencing of bacterial and archaeal isolates has

allowed to get information on functional genes and

biochemical pathways of relevant wastewater treat-

ment microorganisms (Supplementary Table 1). How-

ever, most microorganisms present in wastewater

treatment systems are not thus far cultivated, either

due to laboratorial biases or to interspecies metabolic

dependence. The study of microbial communities as a

whole, and their relation to process performance,

represents nowadays a great challenge for bioengi-

neers and microbiologists. Rapidly advancing tech-

niques such as metagenomics (the study of all genes in

a microbial community), metatranscriptomics (the

study of gene expression in a microbial community),

metaproteomics (the study of proteins from a micro-

bial community), and metabolomics (metabolite pro-

filing and analysis of metabolic fluxes) enable

cultivation-independent analysis of a whole microbial

community under specific environmental conditions

(Handelsman et al. 1998) (Fig. 1). They offer the

possibility to explore the genetic and physiological

diversity of an ecosystem, generating information

about the identity and potential metabolic capabilities

of its microorganisms. Today, these innovative tech-

niques constitute the key to study uncultured wastew-

ater microbes and the metabolic pathways involved in

the wastewater treatment processes, which is imper-

ative for a better design, control and understanding of

bioreactors. Furthermore, the integration of meta-

omics data through a systems microbiology approach

can be used to construct mathematical models for

predicting the response of environmental or engi-

neered systems to external perturbations (Fig. 2).

This review highlights the potential of genomic and

meta-omic approaches to understand the structure,

function and interactions of microbial communities of

wastewater treatment systems, and discusses how

these genomic and meta-omics results influence the

development and monitoring of these biotechnologies.

Examples of relevant processes in presently used

aerobic, anoxic and anaerobic wastewater systems—

namely, nitrogen removal (nitrification, denitrifica-

tion, anammox), phosphorus removal (polyphosphate

accumulation), sulfate reduction, syntrophic conver-

sions, and methanogenesis—are used to explain the

use and potential of genomics and meta-omics data on

the understanding of biological wastewater treatment

processes.

2 Lessons learned from the genomes of wastewater

treatment microbes

Available genomes of wastewater treatment microbes

have generated an excellent body of knowledge about

their genomic and functional diversity. Comparative

genomics can give new hints about genomic variabil-

ity among functionally similar organisms. Genomic

386 Rev Environ Sci Biotechnol (2015) 14:385–406

123



approaches are therefore important to increase our

understanding of structure–function relationships in

microbial communities and potentially leading to

better knowledge about the stability of key processes

in WWTP (Daims et al. 2006).

2.1 Genomic adaptation to different environments

in WWTP

Genomic data help to understand the adaptive mecha-

nisms to changing conditions of wastewater microbes,

which is of key importance in WWTP, since different

wastewater compositions and operational conditions

might stimulate or inhibit the growth of specific

microbes. Microorganisms need to adapt to different

conditions and, at times, a more flexible metabolism

results in competitive advantages.

The genomes of aerobic ammonia-oxidizing bac-

teria (AOB) have been extensively studied, and the

presence of specific genes in some of the analyzed

species may reveal adaptation to, for example, high

concentration of ammonia as well as stress caused by

ammonia starvation, high concentration of nitrogen

oxides or even low concentrations of oxygen (Box 1).

Another adaptation example is the type of nitrite

oxidoreductase (NXR) (cytoplasmic or periplasmic)

Fig. 1 An illustration with the main steps in metagenomic, metatranscriptomic, metaproteomic and metabolomic approaches
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present in nitrite-oxidizing bacteria (NOB). Species

containing periplasmic forms of NXR are likely better

adapted to low concentrations of nitrite (Box 2).

In denitrifying microbes (catalyzing nitrate reduc-

tion to dinitrogen gas) (Fig. 3) the presence of two

different nitrate reductases—membrane-bound nitrate

reductase (NAR) and periplasmic nitrate reductase

(NAP)—may also reflect an ecophysiological adapta-

tion to the environment they inhabit (Liu et al. 2013;

Richardson 2000). In many of the best characterized

Fig. 2 Genomic and post-genomic approaches versus meta-omics approaches
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Box 1 Genome analyses of ammonia-oxidizing bacteria (AOB)

To date, the complete genome sequences of six AOB have been deposited in public databases (Gold Database)—Nitrosomonas europaea

ATCC19718 (isolated from soil), Nitrosomonas eutropha C91 (isolated from a sewage disposal plant), Nitrosomonas sp. AL212 (a (NH4)2SO4-

sensitive bacteria isolated from activated sludge), Nitrosomonas sp. Is79 (isolated from a freshwater sediment) and Nitrosospira multiformis

ATCC25196 (isolated from soil), all within the b-Proteobacteria class, and the c-Proteobacteria Nitrosococcus oceani ATCC19707 (isolated from

seawater). In WWTPs, Nitrosomonas and Nitrosospira are the dominant AOB, though Nitrosococcus mobilis have occasionally been detected

(Nielsen et al. 2010). The figure shows the nitrogen catabolism of AOB and illustrates the arrangement of the amoCAB, hao-orf2-cycAB, nirK and

norCBQD gene clusters in N. europaea (number of copies of each cluster are also indicated)

All AOB genomes harbor gene clusters required to oxidize ammonia (Arp et al. 2007; Bollmann et al. 2013; Suwa et al. 2011): the amoCAB cluster

contains the genes encoding ammonia monooxygenase (Amo), and the cluster hao-orf2-cycAB encodes the genes for hydroxylamine

oxidoreductase (Hao) and two associated cytochromes. The amoA gene, has been widely used as a phylogenetic marker for quantifying AOB (Kuo

et al. 2006) and to study its transcriptional responses to particular conditions in WWTPs and other environments (Aoi et al. 2002, 2004; Kuo et al.

2010). In the genomes of b-AOB, two additional conserved genes, orf4 and orf5, have been identified immediately following the amoCAB operon.

It has been observed that the expression of these genes is up-regulated during the recovery from ammonia starvation conditions (Berube and Stahl

2012). Interestingly, in b-AOB (with the exception of Nitrosomonas sp. Is79), the orf4 and orf5 genes are followed by two genes (CopCD) that

encode copper-tolerance or copper-sequestration proteins and could also have a role in the recovery of AOB from starvation. A homologue of orf5

is present in the genome of N. oceani, but not orf4 or CopCD genes (Klotz et al. 2006). The genomes of N. europaea and N. multiformis also encode

singletons of amoC and orf4/orf5 (Chain et al. 2003; Norton et al. 2008), and the genome of Nitrosomonas sp. Is79 contains two single copies of the

amoC gene (Bollmann et al. 2013). These unclustered copies may extend the flexibility for expression of the ammonia catabolic inventory under

fluctuating ammonia concentrations (Norton et al. 2008)

AOB genomes harbor also genes for the nitrifier denitrification, which are used for nitrite and nitric oxide detoxification. This pathway is the major

source of nitrous oxide (greenhouse gas) produced in WWTP (Colliver and Stephenson 2000; Wunderlin et al. 2012). Reduction of nitrite to nitric

oxide is catalyzed by a copper-dependent nitrite reductase (NirK), while the reduction of nitric oxide to nitrous oxide is catalyzed by a membrane-

bound nitric oxide reductase (Nor). Genes encoding NirK are present in all AOB; all the AOB genomes (except of Nitrosomonas sp. Is79) harbor a

norCBQD cluster that encodes Nor. In N. multiformis and Nitrosomonas sp. AL212 the nirK gene exists as a singleton in the genome (Norton et al.

2008; Suwa et al. 2011). The nirK gene cluster is preceded by a nsrR regulatory gene, which regulates the expression of the nirK gene cluster in

response to nitrite or nitric oxide (Beaumont et al. 2004). Interestingly, the nsrR gene is only present in the genomes of N. europaea and N.

eutropha (Chain et al. 2003; Stein et al. 2007). Both microorganisms are often found in ammonia-rich environments (Arp et al. 2007), suggesting

the key role of this gene on its adaptation to ammonia-rich conditions. It is also interesting that the genome of N. eutropha, a microorganism

isolated from wastewater, exhibits unique alternative terminal oxidases implicated in the adaptation to environments with variable oxygen

concentrations or high concentration of nitrogen oxides (Stein et al. 2007). Therefore, it seems that nsrR and terminal oxidases constitute

adaptations to a particular niche (wastewater)
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denitrification systems NAR catalyzes the anaerobic

nitrate reduction to nitrite. However, NAP enzyme

also supports anaerobic denitrification (Richardson

2000). Escherichia coli can express either NAR or

NAP under anaerobic growth conditions. Competition

experiments using strains expressing either NAR or

NAP, showed that under nitrate-limited conditions the

strain expressing NAR was out-competed by the strain

expressing NAP (Potter et al. 1999). This may reflect a

low Ks (higher affinity) for nitrate when the NAP

system is expressed (Richardson 2000). Despite this,

NAP is less efficient in terms of energy coupling than

Box 2 Genome analyses of nitrite-oxidizing bacteria (NOB)

The available complete genomes of NOB include: Nitrobacter winogradsky Nb-225 (isolated from soil), Nitrobacter sp. Nb-311A

(isolated from seawater), Nitrobacter hamburgensis X14 (isolated from soil), Nitrococcus mobilis Nb-231 (isolated from

seawater) within the Proteobacteria phylum; Nitrolancetus hollandicus Lb (isolated from a nitrifying reactor) within the

Chloroflexi, and Nitrospina Gracilis 3/211 (isolated from seawater) within the Nitrospinae phylum. The metagenome of

‘‘Candidatus Nitrospira defluvii’’ (obtained from an activated sludge enrichment culture) within the Nitrospirae phylum is also

available (Lucker et al. 2010) (see the ‘‘Metagenomics’’ section of this review). Members of the genus Nitrospira are usually

found as predominant NOB in WWTPs (Nielsen et al. 2010)

Genome-based information has revealed differences between NOB that should be considered to optimize control parameters

(temperature, solids retention time, ammonia concentration, pH…) in WWTPs exhibiting a nitrification process or to design

bioaugmentation strategies when problems with nitrification arise. The genomes of all NOB harbor the enzyme NXR (nitrite

oxidoreductase) (Lucker et al. 2013; Sorokin et al. 2012; Starkenburg et al. 2006); NXR is membrane associated and contains

three subunits. The catalytic a subunit (NxrA), the b subunit (NxrB), which probably channels electrons from the a- to the c-

subunit or directly to the membrane-integral electron transport chain (Kirstein and Bock 1993), and the putative c subunit

(NxrC) that channels electrons between the b-subunit and the electron transport chain (Lucker et al. 2010). In Nitrobacter,

Nitrococcus and Nitrolancetus the NXR forms are closely related to each other and the a-subunit NxrA, containing the

substrate-binding site, is oriented toward the cytoplasmic side of the cytoplasmic membrane. On the contrary, Nitrospira,

Nitrospina and Anammox bacteria possess a periplasmically oriented NXR which forms a distinct phylogenetic lineage (Lucker

et al. 2010) (see figure). Periplasmic forms of NXR are thought to be more efficient, because more proton-motive force should

be generated per oxidized nitrite and no nitrite/nitrate transport across the cytoplasmic membrane is needed. Accordingly,

Nitrospira and Nitrospina are much better adapted to lower nitrite concentrations (k-strategists) than most Nitrobacter,

Nitrococcus and Nitrolancetus (r-strategists) (Sorokin et al. 2012). From this information, adjusting the sludge retention time

and other parameters according to the wastewater characteristics in WWTPs seems of key importance to achieve satisfactory

nitrification and thus avoid the formation of nitrous oxide gas

Fig. 3 Complete denitrification pathway and enzymes involved: nitrate reductase (NAR), nitrite reductase (NIR), nitric oxide

reductase (NOR) and nitrous oxide reductase (NOS)
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NAR enzyme and therefore NAP enzyme might reflect

an adaptation to nitrate-limited environments, where

coupling efficiency would be sacrificed in favor of

substrate affinity. A similar situation occurs in five

different members of the genus Thauera isolated from

wastewater, whose recently sequenced genomes (Liu

et al. 2013) shows that Thauera sp. 27, Thauera sp. 28,

Thauera linaloolentis 47Lol and Thauera sp. 63,

reduce nitrate to nitrite by using NAP enzyme, while

Thauera aminoaromatica S2 have the genetic infor-

mation for NAR. These Thauera strains, also differ in

their regulation of the denitrification process; whilst T.

aminoaromatica accumulates negligible amounts of

NO2
-, the other strains reduce all NO3

- to NO2
-

before expressing nitrite reductase (NIR) and nitric

oxide reductase (NOR). The transient accumulation of

N2O is also different between the strains, ranging from

0.06 to 5 % of all NO3-N finally reduced to N2

(Bakken et al. 2012). Incomplete denitrification can

give rise to emission of NO and N2O (Schuster and

Conrad 1992), a toxic compound for microorganisms

and an important greenhouse gas, respectively. In

microorganisms showing a complete denitrification

pathway, as is the case of the five Thauera strains (Liu

et al. 2013) and of the majority of cultured denitrifiers

(Liu et al. 2013) including those isolated from

wastewaters (Supplementary Table 1), emission of

NO and N2O occurs when intermediates accumulate

because the electron fluxes over the four subsequent

denitrification steps are unbalanced. However, the

exact regulation mechanism depends on the type of

microorganism (Rodionov et al. 2005) and a large

variation within taxonomic groups is observed (Bak-

ken et al. 2012). The availability of more denitrifying

genomes in combination with metatranscriptomic,

proteomic and metabolomic and physiological studies

will allow to gain better insight into the regulation of

denitrification and thus may lead to the development

of strategies to prevent NO and N2O emission in

WWTPs.

Also regarding methanogens, genomic information

gathered in recent years has highlighted their adapta-

tion mechanisms to the environment. While

Methanosarcinales use a partial oxidative tricarboxylic

acid (TCA) cycle for anabolic CO2 assimilation, which

results in the loss of one carbon as CO2, Class I

methanogens and Methanomicrobiales use a partial

reductive TCA cycle. The fact that using a partial

reductive TCA cycle would preserve more fixed

carbon could reflect the ability of hydrogrenotrophic

methanogens to efficiently use low H2 concentrations,

while Methanosarcinales are ubiquitous in environ-

ments with high acetate concentrations (Anderson

et al. 2009b). In the recently sequenced genome of

Methanoculleus bourgensis (Maus et al. 2012), genes

encoding high affinity hydrogenases were found,

indicating the adaptability of Methanomicrobiales to

low H2 concentrations. Functional-gene arrays, pro-

teomic and metabolite analyses in model hydrogeno-

trophic methanogens have been used to reveal

mechanisms of regulation and global patterns of gene

expression of this archaea under different growth

conditions, such as H2 limitation (Hendrickson et al.

2007; Walker et al. 2012; Xia et al. 2009). Different

responses of homologous genes, such as those encod-

ing for hydrogenases (hmd, hmdII) enable methano-

gens to adapt to changes in substrate availability.

It is has been observed that larger genomes are

generally associated with wide metabolic versatility

versus smaller genomes. For example Methanosarci-

nales (genome size between 1.9 and 5.7 Mb)

(Genomes Online Database) are metabolically ver-

satile, as compared to hydrogenotrophic methano-

gens which have smaller genomes (between 1.2 and

2.9 Mb for Methanococcales, Methanobacteriales,

and Methanopyrales, and between 1.5 and 3.5 Mb

for Methanomicrobiales and Methanocellales) (Gen-

omes Online Database), and have a more restricted

metabolism. The large differences observed in the

genome sizes of Methanosarcinales reflect the

observed diversity in phenotypic properties, e.g.

Methanosaeta thermophila, which possesses the

smallest genome within Methanosarcinales (1.9 Mb)

is an obligate aceticlastic methanogen, while Metha-

nosarcina acetivorans, which exhibit the largest

genome (5.7 Mb), is a metabolically diverse metha-

nogen able to use acetate, methanol, methylamine,

dimethylamine, and trimethylamine, and likely other

one-carbon compounds as the analysis of its genome

suggested (Galagan et al. 2002; Sowers et al. 1984).

In the case of syntrophic microorganisms, syntrophic

specialists seem to have smaller genomes (e.g.

Syntrophus aciditrophicus SB, 3.18 Mb; Syn-

trophomonas wolfei DSM2245B, 2.94 Mb; Pelo-

tomaculum thermopropionicum SI, 3.02 Mb) than

those that have a more versatile metabolism (e.g.

Syntrophobacter fumaroxidans MPOB, 4.99 Mb;

Desulfatibacillum alkenivornas AK01, 6.52 Mb;
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Desulfovibrio alaskensis G20, 3.73 Mb) (Supplemen-

tary Table 1).

2.2 Ecological roles of phosphate accumulating

organisms (PAOs) in denitrification

and production of storage compounds

Available genomes of PAOs have confirmed their

ability to denitrify. In ‘Candidatus Accumulibacter

phosphatis’, which is primarily responsible for

enhanced biological phosphorous removal (EBPR) in

laboratory- and full-scale plants (He and McMahon

2011), nitrate reductase appears to be absent, but the

genome does encode the rest of the denitrification

pathway from nitrite onwards. It has been suggested

that flanking EBPR species must perform nitrate

reduction, thus supplying the dominant A. phosphatis

population with nitrite for respiration (Martin et al.

2006).

Besides Accumulibacter, members of Actinobacte-

ria [Microlunatus phosphovorus NM-1, Tetrasphaera

australiensis, T. elongata, T. japonica, T. jenkinsii

(Kawakoshi et al. 2012; Kristiansen et al. 2013;

Supplementary Table 1)] have been identified as

important PAOs in some EBPR systems (Seviour

et al. 2008), and also these contain genes involved in

denitrification. The NirK gene, which codes for a

nitrite reductase, has been detected in the Tetras-

phaera genomes, however sets of genes allowing

complete denitrification have not been found (Kawa-

koshi et al. 2012; Kristiansen et al. 2013).

The genomes of Actinobacterial PAOs show that,

as opposed to Accumulibacter, the Actinobacterial

PAO M. phophovorus lacks the phaABC genes for

polyhydroxyalkanoates (PHA) synthesis (Kawakoshi

et al. 2012), suggesting their inability to synthesize

PHAs anaerobically. Notwithstanding, M. phospho-

vorus microorganisms could produce PHA under

aerobic conditions, since they have homologues of

the yfcYX and phaJ gene clusters of E. coli and P.

putida, respectively, which are involved in the b-

oxidation pathway for PHA synthesis. In all four

Tetrasphaera genomes analyzed by Kristiansen et al.

(2013), candidate genes for both acetyl-CoA acetyl-

transferase (phaA) and acetoacetyl-CoA reductase

(phaB) were identified, but PHA synthase (phaC)

was only found in the T. japonica genome, suggesting

that only T. japonica have the potential to synthe-

size PHAs. However, according to the constructed

metabolic model for Tetrasphaera (Kristiansen et al.

2013), these Actinobacterial PAOs can grow and

ferment glucose and produce glycogen under anaer-

obic conditions. Under aerobic conditions, the stored

glycogen is degraded to provide carbon and energy for

growth and polyphosphate formation. Likewise, as

opposed to Accumulibacter, the Actinobacterial PAOs

possesses the genes for the assimilation of glucose

(Martin et al. 2006; Kawakoshi et al. 2012; Kristiansen

et al. 2013). Details into the physiology inferred and/or

confirmed through genomic studies and on the range

of substrates available for the different PAO are of key

importance to understand the competition between

PAOs, and between PAOs and other potential com-

petitors such as the glycogen-accumulating organisms

(GAOs) in EBPR WWTPs if this biotechnological

process is to be operated more efficiently.

2.3 Clues for the avoidance and control

of activated sludge bulking and foaming

Bulking and foaming are especially common prob-

lems related to solids separation in WWTP, and high

operating costs are invested to combat it. ‘‘Candidatus

Microthrix parvicella’’ is one of the most common

filamentous organisms in WWTP, and it is commonly

associated to these bulking or foaming events. The

genomes of two strains of these versatile microorgan-

isms (RN1 strain and Bio17-1 strain) are now avail-

able (McIlroy et al. 2013; Muller et al. 2012) and a

metabolic model of the RN1 strain has been developed

that proportionate interesting clues for developing

control strategies for this filamentous bacterium.

The M. parvicella RN1 genome contains putative

genes for the b-oxidation of long chain fatty acids

(LCFAs) to generate acetyl-CoA, and putative exo-

cellular triacylglycerol (TAG) lipase encoding genes

for hydrolysis of lipids to their constituent LCFA and

glycerol moieties, which is consistent with its previ-

ously observed strong preference for lipids as carbon

source (McIlroy et al. 2013). Under anaerobic condi-

tions, the metabolic model proposes that these LCFA

are used to synthesize triacylgycerol (TAG), which is

used for carbon storage. This storage compound is

functionally analogous to PHA in Accumulibacter,

thus providing the energy and intermediates required

for M. parvicella growth under aerobic conditions.

Genome data also suggests that in strain RN1,

trehalose is functionally analogous to glycogen in
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Accumuibacter. Thus, trehalose would be utilized

anaerobically, and then their replenishment would

occur aerobically.

Both strains are able to accumulate phosphate,

while as opposed to Accumulibacter in which

polyphosphate serves as an anaerobic energy reserve

for carbon uptake, the presence of genes encoding a

polyphosphate glucokinase and a polyphosphate/ATP

NAD? kinase in M. parvicella RN1 suggests the role

for polyphosphate in direct phosphorylation of inter-

mediates involved in energy metabolism. The genome

sequence data also suggest that nitrate in both strains

and nitrate and/or nitrite in RN1 strain, may substitute

for oxygen as the terminal electron acceptor for

anaerobic respiration, although only nitrate reduction

ability is supported by experimental evidence.

Strategies or methods developed to control this

undesirable microorganism are actually based in

changing operational conditions or dosing with polya-

luminium chloride (PAX-14). Sludge retention time

control is limited by the need to maintain a SRT that

favors other process in the wastewater treatment plant,

such as nitrification. The rapid uptake rate and storage

of LCFA in M. parvicella also limits other control

measures, such as trying to eliminate source food.

Hence, the genetic inventory of ‘‘Candidatus Micro-

thrix parvicella’’ makes it of particular interest for

future better and more specific control strategies.

2.4 Electron flow in sulfate-reducing bacteria

(SRB) Interspecies electron transfer

during syntrophic growth

In general, SRB possess large genomes (Zhou et al.

2011), which likely reflects their versatility concern-

ing carbon and energy metabolism. Nevertheless, a

large variation in genome sizes and in gene repertories

is observed among major SRB groups and even

between species and strains of the same genus.

Comparative analyses of SRB genomes have clarified

their mechanisms for energy conservation linked to

sulfate reduction (Keller et al. 2014; Pereira et al.

2011), though still several important mechanisms

remain to be elucidated further. As an example of the

great insight provided by genomics studies, one can

refer to the occurrence of the hydrogen-cycling model,

first proposed by Odom and Peck (1981) to explain

growth of Desulfovibrio vulgaris on lactate and

sulfate. According to this model, electrons and protons

generating from the oxidation of organic acids serve as

substrate for a cytoplasmic hydrogenase. The resulting

H2 could diffuse through the cytoplasmic membrane to

be reoxidized by periplasmic hydrogenases. Electrons

produced from H2 oxidation would be delivered to a c-

type cytochrome pool for returning to the cytoplasm

through transmembrane protein complexes and used

for sulfate reduction. The protons released would

contribute to the chemiosmotic potential. Genomic

studies have shown that this mechanism is important

only for some microorganisms and not for others, such

is the case of Clostridia (Keller and Wall 2011; Pereira

et al. 2011; Ramos et al. 2012). SRB belonging to

Clostridia practically lack cytochromes c or associated

membrane complexes to deliver electrons from

periplasmic hydrogenases to terminal reductases

(Pereira et al. 2011), indicating that periplasmic

electron transfer pathways are not important in these

bacteria for the delivery of electrons to the sulfate

reduction pathway. On the contrary, the large number

of cytochrome c and cytochrome c-associated mem-

brane redox complexes observed in c-Proteobacteria

suggests that the hydrogen-cycling model may be of

importance in the bioenergetics of this group. The

large number of cytochromes c has been correlated

with increased respiratory versatility in anaerobes

(Thomas et al. 2009), suggesting that c-Proteobacteria

occupy environments with variable redox and sub-

strate conditions, such as the wastewater environment.

Alternative strategies for energy conservation in

SRB include electron bifurcation and electron config-

uration mechanisms. A number of cytoplasmic [NiFe]

and [FeFe] hydrogenases, formate dehydrogenases

(FDH), and heterodisulfide reductase-related proteins

detected in SRB genomes are likely candidates to be

involved in energy coupling through electron bifurca-

tion, from diverse electron donors such as H2, formate,

pyruvate, NAD(P)H, b-oxidation (Pereira et al. 2011).

In Desulfovibrio spp. the transmembrane complex

QmoABC participates in a configuration of electrons

to APS reductase for bisulfite production (Ramos et al.

2012). Desulfovibrio alaskensis G20 which lacks

cytoplasmic hydrogenases necessary for the hydro-

gen-cycling model (Hauser et al. 2011), likely

employs a model of electron flow from lactate by

configuration of electrons to adenosine phosphosulfate

(APS) for sulfite production (Keller et al. 2014). With

the availability of complete genome sequences for a

number of SRB, electron carriers and bioenergetic
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pathways can be elucidated in more detail, which is of

importance to understand why certain SRB species

prevail in a particular wastewater environment.

2.5 Interspecies electron transfer

during syntrophic growth

Syntrophic interactions constitute an essential process

in the anaerobic treatment of wastewaters for the

complete mineralization of central intermediates, such

as propionate and butyrate. Syntrophs can be meta-

bolic specialists restricted to syntrophic metabolism

(e.g. Syntrophomonas species), or they can also grow

in the absence of hydrogen-utilizing partner by using

inorganic electron acceptors, such as sulfate (e.g.

Syntrophobacter species, Desulfovibrio vulgaris

Hildenborough, some Pelotomaculum species). These

last (non-specialists) can display the syntrophic or the

sulfidogenic metabolism depending on the imposed

environmental conditions. The presence of multiple

formate dehydrogenase and hydrogenase genes in the

genomes of syntrophs (Pelotomaculum thermopropi-

onicum, Syntrophobacter fumaroxidans) have shown

that syntrophic metabolism involves not only hydro-

gen but also formate transfer in methanogenic envi-

ronments (Plugge et al. 2012; Sieber et al. 2012). The

availability of genomes of syntrophic bacteria have

allowed to get more insight into the importance of

formate as interspecies electron carrier in syntrophic

communities: a systematic functional profiling of the

genomes of syntrophic versus non-syntrophic anaer-

obic fatty acid degrading bacteria have revealed the

differences that make that a short chain fatty acid

degrading bacteria are able to grow in syntrophy with

methanogens and another not. Extra-cytoplasmic

formate dehydrogenases and formate transporter are

absent in genomes of non-syntrophs, whereas they are

present in a number of syntrophs. This indicates that

extracytoplasmic formate production is essential for

syntrophic propionate and butyrate oxidation, two

important intermediates in the anaerobic degradation

process (Worm et al. 2014).

2.6 Unravelling phylogenetic differences

among methanogens

Complete genome sequences of ten methanogenic

archaea previously isolated from anaerobic sludge

are now available, and include the orders

Methanosarcinales (four genomes), Methanomicro-

biales (three genomes) and Methanobacteriales (four

genomes) (Supplementary Table 1). Genomics has

helped to unravel phylogenetic relationships among

methanogens. Based on enzyme and co-factors

involved in methanogenesis, methanogens were phy-

logenetically divided into two classes; Class I com-

prises Methanococcales, Methanobacteriales, and

Methanopyrales orders, that mainly use H2/CO2 or

formate as substrates for methanogenesis, Class II

comprises Methanosarcinales and Methanomicro-

biales that use methyl compounds (acetate, methanol,

methylamines) for methanogenesis (Bapteste et al.

2005). Methanomicrobiales are physiologically more

similar to Class I methanogens, but phylogenetically

more closely related to the Class II Methanosarcinales

(Anderson et al. 2009a, b). The availability of more

sequenced genomes of Methanomicrobiales revealed

that, though Methanomicrobiales share features of

both Class I methanogens and Methanosarcinales,

they also have unique properties. As a result of this

genomic analysis, the class III of methanogens was

proposed to include the order Methanomicrobiales.

3 Metagenomics

Metagenomic studies can proportionate the character-

ization of the previously uncultured microbiota and

their potential metabolic capacities in engineered

ecosystems. The adaptation of shotgun metagenomics,

used to obtain complete genomes from pure cultures,

to the analysis of simple microbial communities (those

in which a small amount of the species is dominant;

e.g. enrichments), allows to obtain near complete

genomes of dominant microorganisms within the

community (Supplementary Table 2; Fig. 4). Today,

the availability of next-generation sequencing (NGS)

techniques, such as the Roche/454’s GS FLX Tita-

nium, the Illumina/Solexa’s GAII or the Life/APG’s

SOLiD 3 of Applied Biosystems, are replacing

expensive and labor intensive Sanger sequencing

method, since enormous volume of data can be

obtained and the time and cost requirements for

sequencing large genomes is drastically reduced

(Metzker 2010). In more complex communities, such

as those generally found in WWTP, metagenomics

offers the possibility to study their phylogenetic

composition and functional potential without prior
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enrichment (Albertsen et al. 2012). Moreover, com-

parative metagenomis, in which the types, abundance

and distribution of genes across metagenomes are

compared, allow to understand how genomic differ-

ences affect, and are affected by, the abiotic environ-

ment (Fig. 4; Wooley et al. 2010).

3.1 Insights into wastewater microorganisms

that are not picked by physiology/enrichment

approaches

A gene-centric approach in metagenomics allows

insight into the vast majority of wastewater microor-

ganisms that are difficult to cultivate or enrich.

Pyrosequencing of an aerobic sludge from a petroleum

refinery WWTP enriched for phenol degradation

(Silva et al. 2012), showed the great metabolic

versatility and huge bacterial diversity of the system.

The microbial community showed potential to

degrade other organic and xenobiotic compounds than

phenol (genes for toluene, naphthalene, benzoate

degradation were found). Previous works have

reported huge bacterial diversity of wastewater treat-

ment sludges (Miura et al. 2013; Sanapareddy et al.

2009; Silva et al. 2010). This is of particular interest,

since maximizing bacterial diversity in wastewater

treatment ecosystems has been shown as a way to

maintain functional redundancy within microbial

communities, thus being a strategy to better cope with

variability of input wastewater or other disturbances

(McMahon et al. 2007). Even the use of engineered

disturbances has been proposed as a control strategy of

community assembly and thus process stability

(McMahon et al. 2007).

The dominant and non-dominant microbial groups

within a microbial community can be addressed by

metagenomics, but coverage of non-dominant groups

seem to vary depending of the sequencing technique

employed. For example, the same community was

analyzed by different technologies in a production-

scale biogas fermenter fed with renewable primary

products (Jaenicke et al. 2011; Schluter et al. 2008).

Both studies showed Clostridia as the most prevalent

taxonomic class that was likely involved in cellulose

degradation, and the order Methanomicrobiales as

dominant among methanogens. However, as com-

pared to the GS FLX platform, the GS FLX Titanium

platform obtained a 3.5-fold coverage into the non-

Fig. 4 Metagenomics: the assembly versus the gene-centric approach
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abundant microbial groups, thus resulting in the

identification of additional genera and functional

elements (Schluter et al. 2008; Jaenicke et al. 2011).

The analysis of a different biogas fermenter fed with a

substrate mix with similar composition than the above

mentioned (plant biomass and pig manure slurry) by

using the Applied Biosystems SOLiDTM 4 sequenc-

ing platform (Wirth et al. 2012), released similar

results regarding to the systematic and functional

contexts of the community (Clostridia as key players

in the hydrolysis of the plant biomass through

cellulose degradation and hydrogen production and

Mehanomicrobiales as dominant among methano-

gens). Regardless of the sequencing technique used,

the studies aforementioned allowed to insight into the

composition and gene contents of the hydrolytic

consortia within the community. Due to hydrolysis

of organic matter constitutes a significant limiting step

for biogas production, knowledge on the composition

and genetic properties of hydrolytic bacteria is essen-

tial to optimize initial steps in the decomposition of

substrates for biogas production (Schluter et al. 2008).

In the same way, the studies highlighted the key role of

hydrogenotrophic methanogenesis in the system.

Metagenome reads assigned to the archaeal genus

Methanoculleus represented high-affinity membrane-

bound hydrogenases, which would ensure an efficient

hydrogen oxidation in the course of methanogenesis,

resulting in an efficient biogas production.

3.2 Insights into dominant players in WWTPS

communities

3.2.1 Understating evolutionary history

and adaptations to the environment

From an activated sludge enrichment culture, the

genome of ‘‘Candidatus Nitrospira defluvii’’, a pre-

dominant NOB in WWTP (Daims et al. 2006; Nielsen

et al. 2010), was reconstructed, shedding light on the

nitrification process and clarifying the evolutionary

history of this nitrite oxidizer (Lucker et al. 2010).

‘‘Candidatus Nitrospira defluvii’’ differs much from

other known nitrite oxidizers (i.e. the proteobacterial

NOB Nitrobacter and Nitrococcus) in the key enzyme

nitrite oxidoreductase (NXR), which is a periplasmi-

cally oriented NXR (Box 2), the composition of the

respiratory chain, and the pathway used for autotrophic

carbon fixation, suggesting multiple independent

evolution of chemolithoautotrophic nitrite oxidizing

microorganisms. From the metagenome of this bac-

terium, an unexpected evolutionary link between

Nitrospira and anammox organisms, which share the

periplasmic forms of NXR (Box 2) and other proteins,

was observed. A later work showed an evolutionary

link also between Nitrospina (a marine nitrite oxi-

dizer), Nitrospira and anammox bacteria, apparently

including the horizontal transfer of the periplasmically

oriented nitrite oxidoreductase and other key genes for

nitrite oxidation at an early evolutionary stage (Lucker

et al. 2013) (Box 2). Other important characteristics

were revealed from the metagenome of ‘‘Candidatus

Nitrospira defluvii’’, such as its adaptation to substrate-

limited conditions and its lack of most classical defense

mechanisms against oxidative stress, suggesting that a

good aeration control is crucial for maintaining stable

and active populations of these organisms in engi-

neered systems (Lucker et al. 2010).

3.2.2 Metagenomics enables comparative analysis

of wastewater microorganisms

Anammox bacteria are involved in one of the three main

processes to remove nitrogen from wastewaters (nitri-

fication, denitrification, anaerobic ammonium oxida-

tion—anammox). However, none of them has been

obtained as pure cultures, thus being metagenomics a

key method to access their genomes and get a better

understanding of these important wastewater microor-

ganisms. The first obtained metagenome, that of the

anammox bacterium ‘‘Candidatus Kuenenia stuttgar-

tiensis’’ (Supplementary Table 2) allowed to deduce the

metabolic pathway of the anammox reaction, which

comprises four enzymatic steps, generating the inter-

mediates nitrite, nitric oxide, and nitrous oxide (Fig. 5),

and revealed the presence of genes involved in the

acetyl-CoA-pathway for autotrophic carbon fixation

(Strous et al. 2006). The high number of genes detected

involved in catabolism and respiration, confirmed the

versatility of this anammox bacterium with respect to

the use of different electron donors and acceptors.

In the last years, the number of anammox

metagenomes has increased including: a marine

species ‘‘Candidatus Scalindua profunda’’ (van de

Vossenberg et al. 2013), two wastewater species,

KSU-1 and ‘‘Candidatus Jettenia asiatica’’ (Hira et al.

2012; Hu et al. 2012) and a freshwater species

‘‘Candidatus Brocadia fulgida’’ (Gori et al. 2011).
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Comparative analyses of the anammox metagen-

omes (Gori et al. 2011; Hu et al. 2012; van de

Vossenberg et al. 2013) have shown that the enzyme

hydrazine synthase (HZS), is a unique protein complex

very well conserved in anammox bacteria (Fig. 5). In

fact, the a-subunit of the hydrazine synthase (hzsA) has

been used as a molecular marker (phylomarker) to

detect and quantify anammox bacteria (Harhangi et al.

2012; Russ et al. 2013), which highlights the high value

of metagenomic studies for the development of further

applications. Differences in gene repertories have been

found too between the different anammox metagen-

omes. For example in the enzymes that catalyze the

reduction of nitrite to nitric oxide (Fig. 5). This step is

catalyzed by a cd1 nitrite reductase (NirS) protein in

‘‘Candidatus Kuenenia stuttgartiensis’’ and ‘‘Candida-

tus Scalindua profunda’’, while in ‘‘Candidatus Jettenia

asiatica’’, ‘‘Candidatus Brocadia fulgida’’ and strain

KSU-1 a copper-containing nitrite reductase (NirK) is

used, indicating different alternatives to convert nitrite

to NO. Also, differences in genes involved in inorganic

nitrogen transport have been observed. The metagen-

omes of ‘‘Candidatus Scalindua profunda’’, ‘‘Candida-

tus Kuenenia stuttgartiensis’’ and ‘‘Candidatus Jettenia

asiatica’’ possess multiple genes encoding focA, a

formate/nitrite transport protein, which might give them

the advantage to inhabit in environments with low

inorganic nitrogen compounds concentrations. In con-

trast, ‘‘Candidatus Brocadia fulgida’’ possesses only

one gene, which may reflect its adaptation to more

resource-abundant environments. In fact, relatively

higher rates of this bacterium in the presence of

ammonium, nitrite and propionate have been observed,

as compared to other anammox microorganisms (Kartal

et al. 2008). This knowledge is crucial to understand

which anammox microorganisms will develop in

bioreactors depending on the wastewater characteris-

tics. Even differences at the species level exist; from the

metagenomes of two geographically distant ‘‘Candida-

tus Kuenenia stuttgartiensis’’ strains (RU1 and CH1)

(Speth et al. 2012), it was observed that approximately

369 genes were absent from CH1 strain. Likely, mobile

genetic elements are responsible for this variation that

appear to emerge as an adaptative response to the

environmental characteristics.

As more anammox metagenomes become avail-

able, specific metabolic features of these bacteria will

be discovered, which will help to understand how

genomic differences affect the behavior of these

microorganisms in WWTPs. This knowledge could

be used to better select the inoculum for the treatment

of wastewaters with specific properties. Metagenomic

data are also essential for the design of new molecular

biomarkers that allow the detection of these slow

growing bacteria, by for example quantitative PCR. In

fact, qPCR has been used as a reliable indicator for

growth of the anammox populations (van der Star et al.

2007, 2008).

3.2.3 Insights that help towards the isolation of key

players

The metagenomic analysis of samples from two

sequencing batch reactors (SBRs) previously enriched

Fig. 5 a Key reactions in nitrogen catabolism of anammox

bacteria: (1) reduction of nitrite to nitric oxide by a nitrite

reductase (NIR), (2) condensation of ammonium and nitric

oxide into hydrazine by a hydrazine synthase (HZS), (3)

oxidation of hydrazine into dinitrogen gas by an hydrazine

oxidoreductase (HZO). b Organization of HZS genes in

Kuenenia stuttgartiens. The HZS genes, encoded by the gene

cluster (hzsCBA) (kuste2859-2861-2861), are very well con-

served in anammox bacteria
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in the polyphosphate-accumulating organism (PAO)

‘‘Candidatus Accumulibacter phosphatis’’, allowed to

obtain the near complete genome of this microorgan-

ism, and provided a blue print and understanding for

the EBPR process (Martin et al. 2006). High-affinity

orthophosphate (Pi) transporter genes in ‘‘Candidatus

Accumulibacter phosphatis’’ were detected, which are

important to ensure very low Pi concentrations in the

treated wastewater. Metagenomic data allowed to

reconstruct the EBPR metabolic model of Accu-

mulibacter, clarifying controversial aspects such as

the source of reducing power (NADP(H)) necessary

for anaerobic polyhydroxyalkanoates (PHA) produc-

tion. Two different mechanisms were proposed. In the

first, NAD(P)H would be provided by glycogen

degradation and the full anaerobic functioning of the

TCA cycle. The discovery of a novel cytochrome b/b6

supports this hypothesis since this protein would

function for the necessary reoxidation of reduced

quinones produced by succinate dehydrogenase, thus

supporting an anaerobic functionality of the TCA

cycle. An alternative scenario to full anaerobic

functioning of the TCA cycle is the operation of a

partial reductive TCA cycle (from oxaloacetate to

succinyl-CoA), under anaerobic conditions, as fuma-

rate reductase, which reduces fumarate to succinate,

was present in the metagenome of Accumulibacter.

From metagenomic data, Mino and Satoh (2006)

suggested that these two alternative pathways would

act in the cell as a redox balance regulation mechanism

when PAOs take up some carbon sources, such as

lactate, and store them as PHA with concomitant

consumption of excess reducing power. When the cell

was using the normal TCA cycle, a succinate dehy-

drogenase would be active and reducing power would

be produced, but when the TCA cycle was operating in

reverse, NAD(P)H would be consumed via a fumarate

reductase. The fact that A. phosphatis contains

fumarate reductase means that it should be able to

use substrates other than acetate and propionate under

anaerobic conditions, which would provide this bac-

terium with an advantage in the rapidly changing

conditions of an EBPR sludge (Mino and Satoh 2006).

These and other metabolic and ecological insights,

which were deduced from the A. phosphatis metagen-

ome, help to understand the EBPR process and provide

important clues for the isolation of Accumulibacter

PAOs as pure cultures. Moreover, genes, enzymes and

metabolites involved in carbon and phosphorus

transformation pathways may be used as functional

biomarkers for determining and monitoring phospho-

rus removal in wastewater treatment systems.

3.2.4 Insights into syntrophic bacteria in wastewater

treatment systems

Methane production in anaerobic reactors largely

depends on syntrophic interactions, thus, knowledge

about new syntrophic microorganisms and their

metabolic capabilities is essential to control and

optimize methane yields. The near complete genome

of a non-dominant potentially new syntrophic

microorganism, ‘‘Candidatus Cloacamonas aci-

daminovorans’’, has been obtained from an anaerobic

digester without prior enrichment (Pelletier et al.

2008; Supplementary Table 2). The genome of this

microorganism revealed the presence of genes for

several hydrogenases and five different ferredoxin

oxidoreductases which suggested its potential syn-

trophic lifestyle. A metagenomic assembly approach

used in a hyper-mesophilic reactor previously

enriched for terephthalate (TA) degradation seeded

light on the species interactions within the consortia

and allow to explained how TA degradation occurred

(Lykidis et al. 2011; Supplementary Table 2). Only

partial microbial genomes of the dominant microor-

ganisms (Pelotomaculum, Thermotogae, Syntrophus

and representatives of the candidate phyla OP5) could

be obtained, however this work showed that TA

degradation was not a simply syntrophic interaction

between H2-producing bacteria and methanogenic

archaea, but additional secondary syntrophic interac-

tions took place to maintain the stability of the TA-

degrading community.

3.2.5 Potential role of transposable and phages

elements

The metagenome of the activated sludge of a non-

EBPR WWTP and an EBPR WWTP (Supplementary

Table 3) showed the prevalence of transposases

(Albertsen et al. 2012; Sanapareddy et al. 2009). This

make sense since these enzymes, which catalyzes the

movement of transposons to another part of the

genomes, are important in creating genetic diversity

and adaptability in environments with changing living

conditions (Aziz et al. 2010), such as those present in

nutrient removal WWTP. Both studies also
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highlighted the lack of reference genomes as a main

limitation to study these WWTPs in detail.

In the study of the full scale EBPR WWTP

(Albertsen et al. 2012) high numbers of phage proteins

were identified in the metagenome. Phages have been

found to affect dynamics of Accumulibacter popula-

tions (Albertsen et al. 2013; Barr et al. 2010; Kunin

et al. 2008) and thus, deeply-sequencing metagenomic

studies would be relevant for identifying the active

phages and designing phage-control strategies in full-

scale WWTPs. Only 15 % of the reads matching

Accumulibacter had a high similarity (\95 %) to the

sequenced Accumulibacter clade IIA strain UW-1

genome, indicating the presence of some microdiver-

sity. This microdivesrity seems to respond to a

selective pressure from phages, since the main differ-

ences between the reference genome and the Accu-

mulibacter strains present in the metagenome were

related to phage predation and defense.

4 Metatranscriptomics and metaproteomics

To really uncover what functions the community

members are carrying out under specific conditions,

the metatranscriptome or metaproteome (collective

mRNA or protein from all organisms present in a

biological ecosystem) must be analyzed. Challenges

associated with the application of metaproteomics

have been extensively reviewed (Roh et al. 2010;

Simon and Daniel 2011; Sorek and Cossart 2010;

Wagner et al. 2007). Several techniques have been

used, but currently, direct cDNA sequencing trough

NGS is the most viable alternative (Chistoserdova

2010; Roh et al. 2010) (Fig. 2). Metaproteomics, also

known as environmental proteomics, community

proteomics and community proteogenomics (Schnei-

der and Riedel 2010) allows detection of key enzymes

involved in important metabolic pathways and corre-

lates them with expression and genomic profiles of

microbial populations. Techniques used and chal-

lenges associated to this approach have been discussed

in several works (Lo et al. 2007; Schneider and Riedel

2010; Wilmes and Bond 2006a).

Metaproteomic and metatransciptomic studies

applied to wastewater treatment are listed in Supple-

mentary Tables 4 and 5. Metaproteomics of mixed

cultures from a continuous-flow wastewater treatment

bioreactor that was fed a mixture of twelve organic

chemicals (acetone, 2-butanone, 2-hexanone, phenol,

p-cresol, 2,4-dimethyl phenol, benzene, toluene,

m-xylene, chlorobenzene, 1,4-dichlorobenzene, and

1,2,4-trichlorobenzene) and exposed to the toxic

cadmium have provided functional information about

the response of microbial communities to a chemical

stress (Lacerda et al. 2007). Proteomic analysis

revealed significant shifts in the microbial community

physiology within 15 min of cadmium exposure, a

rapid change not detectable using the phylogenetic

profiling tools common to molecular microbial ecol-

ogy. Moreover, significant community proteome

responses after 0.25, 1, 2, and 3 h of exposure to

cadmium were observed, with more than 100 protein

expression changes detected at each time point,

suggesting that the community’s short-, medium-,

and long-term responses to this stress were different.

More than 100 unique differentially expressed pro-

teins, including proteins of importance in the cadmium

shock such as ATPases, oxidoreductases, and trans-

port proteins were identified.

Abram et al. (2011) used metaproteomics to

provide functional evidence of key metabolic path-

ways from an anaerobic EGSB reactor treating

synthetic glucose-based wastewater. They could iden-

tify proteins of relevant metabolic pathways taking

place in the bioreactor, such as glucose degradation

via glycolysis and the pentose phosphate pathway, and

the production of methane via methanogenesis from

both CO2 and acetate. Metaproteomics allowed to

uncover key biochemical metabolic pathways occur-

ring in the bioreactor. By using this technique, it might

also be possible to identify enzymatic markers, or

temporal shifts in the protein expression patterns in the

microbial communities, which could be used as

predictive indicators of process failure (Abram et al.

2011).

Yu and Zhang (2012) conducted a metatranscrip-

tomic work on nitrogen removal in a full-scale

WWTP. Through metagenomics and metatranscrip-

tomics by Illumina sequencing of the activated sludge

community, they found differences between the DNA

and cDNA datasets with regards to microbial com-

munity composition and gene expression. Despite that

the nitrification-related genes showed a low abun-

dance in DNA datasets, the cDNA datasets suggested a

strong nitrification activity, which highlights the

importance of gene expression analyses in detecting

active populations within the community. Kuhn et al.
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(2011) investigated five aerobic membrane biological

reactors (MBR) fed with municipal wastewater, but

with different configurations and applications (two of

them were configured for carbon removal, another two

for carbon and nitrogen removal and one of them

exhibited carbon, nitrogen and phosphorus removal).

Most of the MBR performed nitrification, thus the

detection of proteins from the AOB Nitrosomonas

europaea was expected. However, proteins from

bacteria not previously found in wastewater treatment

systems were detected too. The authors also found the

protein elastase—a human protease from pancreas—

in all MBR samples, suggesting that this protease is a

significant constituent of municipal wastewater.

Several studies have focused on the study of protein

and gene expression of Accumulibacter-enriched

EBPR sludges or activated sludge communities.

Preliminary metaproteomic studies on lab-scale acti-

vated sludge systems enriched in Accumulibacter

demonstrated a strong similarity in protein profiles

under anaerobic and aerobic conditions of the EBPR

process (Wilmes and Bond 2004, 2006b). This was

further confirmed by subsequent metaproteomic and

metatranscriptomic analyses of Accumulibacter-en-

riched populations from different local WWTPs (He

et al. 2010; Wexler et al. 2009; Wilmes et al. 2008a).

As a possible explanation for this, He et al. (2010)

suggested that the majority of genes involved in EBPR

are constitutively expressed at low levels during an

EBPR cycle, which may give a selective advantage to

Accumulibacter through a better response under

fluctuating conditions existing in WWTPs. Genes that

were upregulated aerobically involved functions such

as the TCA cycle, ATP synthesis, transcription,

translation and protein translocation, supporting

EBPR metabolic models that the oxidation of intra-

cellularly stored carbon provides ATP for cell growth

when oxygen becomes available (He et al. 2010). The

metatranscriptomic analysis of Accumulibacter of He

et al. (2010) reinforced hypotheses previously inferred

from the metagenomic analysis (Martin et al. 2006),

e.g. NADP(H) for PHA production under anaerobic

conditions is likely derived from the operation of the

TCA cycle together with glycogen degradation. The

study confirmed the expression of genes previously

hypothesized to be involved in EBPR process, such as

for PHA synthesis and polyphosphate formation, and

novel genes such as genes for extracellular polymeric

substances (EPS) formation, should be of importance

for Accumulibacter survival in its environment. Con-

sistent results were observed from both the metatran-

scriptomic (He et al. 2010) and metaproteomics

analyses (Wilmes et al. 2008a, b) for example in the

detection of the fatty acid beta-oxidation pathway.

Significant differences in gene detection were found

for genes involved in EPS formation and denitrifica-

tion, which could be due to the fact that different

Accumulibacter clades were analyzed in the studies,

clade IIA (He et al. 2010) and clades I and IID

(Wilmes et al. 2008b). These results also highlight the

necessity for more genomic and post-genomic studies

on other Accumulibacter clades to gain knowledge on

the physiological characteristics, ecological niches

and functions. This knowledge would be crucial in

optimizing EBPR process in full-scale WWTPs.

5 Applications in wastewater biotechnology:

future perspectives

Meta-omics holds a great potential for discovering

novel microbial clades or enzymes that are relevant for

wastewater treatment. A better knowledge on the

composition and functional dynamics of microbial

communities will have a far-reaching impact in the

wastewater treatment sector by allowing the develop-

ment of new or improved processes and innovative

bioreactor designs. Omics-generated information can

be used to direct bioaugmentation strategies, likely

using enriched cultures, and to change plant opera-

tional parameters to favor certain phylogenetic groups

or to steer metabolic pathways. Success of bioaug-

mentation is often dependent on WWTP operation

parameters and, therefore, these two aspects can be

mutually dependent. Bioaugmentation has been suc-

cessfully applied for several full- and lab-scale cases.

Most of the bioaugmentation trials were performed

with pure cultures, and therefore highly dependent on

available isolates (Bouchez et al. 2009; Duque et al.

2011; Ikeda-Ohtsubo et al. 2013; Lenz et al. 2009).

Enriched cultures have also been used with promising

results, e.g. in phosphorus removal (Dabert et al. 2005)

and for the treatment of hypersaline wastewaters (Shi

et al. 2012). In both approaches, selection of bioaug-

menting inoculum is based on the principle that certain

microorganisms are better suited for a required

catabolic task than others, due to their physiological

properties, or often just because they have been found
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to be predominant in environments where the specific

catabolic route occurs.

Metagenomics allows us to obtain more in-depth

and representative coverage of the microbial groups

and catabolic genes present in WWTP. Thereby it can

uncover previously not identified phylogenetic groups

or novel metabolic pathways. These data could give

important clues to which microbes might be beneficial

in bioaugmentation, allowing for the introduction and/

or improved enrichment of the desired microbes in the

WWTP sludge. Besides this, phylogenetic relatedness

of newly identified phylotypes to cultured relatives

could foster their isolation from WWTP sludge,

allowing for further ecophysiological and bioaugmen-

tation studies. There are few examples of uncultivated

bacteria that have been isolated from complex ecosys-

tems using meta-genomics/transcriptomics informa-

tion (Bomar et al. 2011; Tyson et al. 2005). Tyson

et al. (2005) isolated Leptospirillum ferrodiazotro-

phum from an acid mine drainage biofilm after

discovering that a minor member of the community

had a single nitrogen fixation operon (nifHD-KENX).

This finding, which was detected by random shotgun

sequencing, suggested a simple directed isolation

strategy by serial dilution in nitrogen-free liquid

medium. Using meta-transcriptomics, Bomar et al.

(2011) were able to show that an uncultured Rikenella-

like leech gut symbiont was able to forage on host

mucin glycans. The high expression levels of a

sulfated-mucin desulfatase (smdS1) and endo-b-N-

acetylglucosaminidase (endoG) genes strongly sug-

gested that mucins were the main source of energy and

carbon for the Rikenella-like bacterium. This enabled

the cultivation of the Rikenella-like bacterium in a

mucin-containing medium. The strategies described in

these examples prove the potential of -omics tools to

predict the adequate environmental conditions or the

right selective pressure to steer microbial

communities.

Much progress can be gained in wastewater treat-

ment processes through the exploitation of this

potential to identify new microorganisms. Not only

can more microorganisms that can further serve as

bioaugmenting strains be isolated, but also operational

bioreactor conditions can be defined and improved

based on the omics-based knowledge. It is presently

known that some SRB can switch from sulfidogenic to

syntrophic metabolism (Plugge et al. 2011); these

microorganisms might be ideal for the treatment of

wastewaters with low concentration of sulfate, as they

can efficiently convert sulfate and then work together

with methanogens for biogas production. In fact,

Desulfovibrio species became the main lactate-fer-

menting bacteria in an anaerobic reactor degrading

whey (Chartrain and Zeikus 1986). EBPR processes

are also rather complex with competing reactions

between polyphosphate accumulating organisms

(PAOs) and glycogen accumulating organisms

(GAOs). Population dynamics and metabolic diversity

of PAOs and GAOs has been tentatively modeled

already including metagenomic information on PAO

(Martin et al. 2006; Oehmen et al. 2010). More

genomic data on the different clades of Accumulibac-

ter are necessary (Martin et al. 2006; He et al. 2010) to

understand its different physiological properties and

for further transcriptomic and proteomic analyses that

will help to understand the EBPR process and which

are the operational conditions that favor the presence

of each Accumulibacter clade in bioreactors. Meta-

omic information allows us to understand syntrophic

interactions between microbes, not only in wastewater

treatment systems but also in bioremediation sites

(Lykidis et al. 2011; Maphosa et al. 2012).

The development of predictive models for distilling

the main processes that drive the bioreactor systems

largely depends on the generation of meta-omic

information. Today, flux balance analysis (FBA) is

one promising approach for metabolic modeling of

microorganisms, since it does not require kinetic

parameters for the reactions involved and can be

scaled to deal with complete genomes (McMahon

et al. 2007). However, novel computational

approaches are needed that allow the interpretation

and integration of meta-omic datasets (Roling et al.

2010). Meta-omic approaches are also powerful tools

for the development of specific biomarkers or the

analysis of protein expression patterns of the microbial

communities that could be used as predictive indica-

tors of process performance, aiding in the monitoring

and control of wastewater treatment processes.
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