439 research outputs found

    Advances in construction and modeling of functional neural circuits in vitro

    Get PDF
    AbstractOver the years, techniques have been developed to culture and assemble neurons, which brought us closer to creating neuronal circuits that functionally and structurally mimic parts of the brain. Starting with primary culture of neurons, preparations of neuronal culture have advanced substantially. Development of stem cell research and brain organoids has opened a new path for generating three-dimensional human neural circuits. Along with the progress in biology, engineering technologies advanced and paved the way for construction of neural circuit structures. In this article, we overview research progress and discuss perspective of in vitro neural circuits and their ability and potential to acquire functions. Construction of in vitro neural circuits with complex higher-order functions would be achieved by converging development in diverse major disciplines including neuroscience, stem cell biology, tissue engineering, electrical engineering and computer science

    A Pulmonary Paragonimiasis Case Mimicking Metastatic Pulmonary Tumor

    Get PDF
    Pulmonary paragonimiasis is a relatively rare cause of lung disease revealing a wide variety of radiologic findings, such as air-space consolidation, nodules, and cysts. We describe here a case of pulmonary paragonimiasis in a 27-year-old woman who presented with a 2-month history of cough and sputum. Based on chest computed tomography (CT) scans and fluorodeoxyglucose positron emission tomography (FDG-PET) findings, the patient was suspected to have a metastatic lung tumor. However, she was diagnosed as having Paragonimus westermani infection by an immunoserological examination using ELISA. Follow-up chest X-ray and CT scans after chemotherapy with praziquantel showed an obvious improvement. There have been several reported cases of pulmonary paragonimiasis mimicking lung tumors on FDG-PET. However, all of them were suspected as primary lung tumors. To our knowledge, this patient represents the first case of paragonimiasis mimicking metastatic lung disease on FDG-PET CT imaging

    On the Change of the Inner Boundary of an Optically Thick Accretion Disk around White Dwarfs Using the Dwarf Nova SS Cyg as an Example

    Full text link
    We present the results of our studies of the aperiodic optical flux variability for SS Cyg, an accreting binary systemwith a white dwarf. The main set of observational data presented here was obtained with the ANDOR/iXon DU-888 photometer mounted on the RTT-150 telescope, which allowed a record(for CCD photometers) time resolution up to 8 ms to be achieved. The power spectra of the source's flux variability have revealed that the aperiodic variability contains information about the inner boundary of the optically thick flow in the binary system. We show that the inner boundary of the optically thick accretion disk comes close to the white dwarf surface at the maximum of the source's bolometric light curve, i.e., at the peak of the instantaneous accretion rate onto the white dwarf, while the optically thick accretion disk is truncated at distances 8.5e9 cm ~10 R_{WD} in the low state. We suggest that the location of the inner boundary of the accretion disk in the binary can be traced by studying the parameters of the power spectra for accreting white dwarfs. In particular, this allows the mass of the accreting object to be estimated.Comment: 9 pages, 7 figures, Published in Astronomy Letter

    DNA Methylation Patterns of Ulcer-Healing Genes Associated with the Normal Gastric Mucosa of Gastric Cancers

    Get PDF
    Recent evidence suggests that gastric mucosal injury induces adaptive changes in DNA methylation. In this study, the methylation status of the key tissue-specific genes in normal gastric mucosa of healthy individuals and cancer patients was evaluated. The methylation-variable sites of 14 genes, including ulcer-healing genes (TFF1, TFF2, CDH1, and PPARG), were chosen from the CpG-island margins or non-island CpGs near the transcription start sites. The healthy individuals as well as the normal gastric mucosa of 23 ulcer, 21 non-invasive cancer, and 53 cancer patients were examined by semiquantitative methylation-specific polymerase chain reaction (PCR) analysis. The ulcer-healing genes were concurrently methylated with other genes depending on the presence or absence of CpG-islands in the normal mucosa of healthy individuals. Both the TFF2 and PPARG genes were frequently undermethylated in ulcer patients. The over- or intermediate-methylated TFF2 and undermethylated PPARG genes was more common in stage-1 cancer patients (71%) than in healthy individuals (10%; odds ratio [OR], 21.9) and non-invasive cancer patients (21%; OR, 8.9). The TFF2-PPARG methylation pattern of cancer patients was stronger in the older-age group (≥55 yr; OR, 43.6). These results suggest that the combined methylation pattern of ulcer-healing genes serves as a sensitive marker for predicting cancer-prone gastric mucosa

    Theory of disk accretion onto supermassive black holes

    Full text link
    Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining the structure and observational appearance of the accretion flow. Ongoing investigations into the dynamics of the plunging region, the origin of variability in the accretion process, and the evolution of warped, twisted, or eccentric disks are summarized.Comment: Mostly introductory review, to appear in "Supermassive black holes in the distant Universe", ed. A.J. Barger, Kluwer Academic Publishers, in pres

    Complete Genetic Correction of iPS Cells From Duchenne Muscular Dystrophy

    Get PDF
    Human artificial chromosome (HAC) has several advantages as a gene therapy vector, including stable episomal maintenance that avoids insertional mutations and the ability to carry large gene inserts including the regulatory elements. Induced pluripotent stem (iPS) cells have great potential for gene therapy, as such cells can be generated from the individual's own tissues, and when reintroduced can contribute to the specialized function of any tissue. As a proof of concept, we show herein the complete correction of a genetic deficiency in iPS cells derived from Duchenne muscular dystrophy (DMD) model (mdx) mice and a human DMD patient using a HAC with a complete genomic dystrophin sequence (DYS-HAC). Deletion or mutation of dystrophin in iPS cells was corrected by transferring the DYS-HAC via microcell-mediated chromosome transfer (MMCT). DMD patient- and mdx-specific iPS cells with the DYS-HAC gave rise to differentiation of three germ layers in the teratoma, and human dystrophin expression was detected in muscle-like tissues. Furthermore, chimeric mice from mdx-iPS (DYS-HAC) cells were produced and DYS-HAC was detected in all tissues examined, with tissue-specific expression of dystrophin. Therefore, the combination of patient-specific iPS cells and HAC-containing defective genes represents a powerful tool for gene and cell therapies

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Survey Sequencing and Comparative Analysis of the Elephant Shark (Callorhinchus milii) Genome

    Get PDF
    Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras) provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.4× coverage) and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element–like and long interspersed element–like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genome has not experienced an additional whole-genome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey-sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes

    Highly frequent PIK3CA amplification is associated with poor prognosis in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The phosphoinositide 3-kinase (PI3K)/Akt pathway plays a fundamental role in cell proliferation and survival in human tumorigenesis, including gastric cancer. <it>PIK3CA </it>mutations and amplification are two major causes of overactivation of this pathway in human cancers. However, until this work, there was no sound investigation on the association of <it>PIK3CA </it>mutations and amplification with clinical outcome in gastric cancer, particularly the latter.</p> <p>Methods</p> <p>Using direct sequencing and real-time quantitative PCR, we examined <it>PIK3CA </it>mutations and amplification, and their association with clinicopathological characteristics and clinical outcome of gastric cancer patients.</p> <p>Results</p> <p><it>PIK3CA </it>mutations and amplification were found in 8/113 (7.1%) and 88/131 (67%) gastric cancer patients, respectively. <it>PIK3CA </it>amplification was closely associated with increased phosphorylated Akt (p-Akt) level. No relationship was found between <it>PIK3CA </it>mutations and clinicopathological characteristics and clinical outcome in gastric cancer. <it>PIK3CA </it>amplification was significantly positively associated with cancer-related death. Importantly, Kaplan-Meier survival curves revealed that the patients with <it>PIK3CA </it>amplification had significantly shorter survival times than the patients without <it>PIK3CA </it>amplification.</p> <p>Conclusions</p> <p>Our data showed that <it>PIK3CA </it>mutations were not common, but its amplification was very common in gastric cancer and may be a major mechanism in activating the PI3K/Akt pathway in gastric cancer. Importantly, Kaplan-Meier survival curves revealed that <it>PIK3CA </it>amplification was significantly positively associated with poor survival of gastric cancer patients. Collectively, the PI3K/Akt signaling pathway may be an effective therapeutic target in gastric cancer.</p

    Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper

    Get PDF
    The immunomodulatory and antimicrobial properties of zinc and copper have long been appreciated. In addition, these metal ions are also essential for microbial growth and survival. This presents opportunities for the host to either harness their antimicrobial properties or limit their availability as defence strategies. Recent studies have shed some light on mechanisms by which copper and zinc regulation contribute to host defence, but there remain many unanswered questions at the cellular and molecular levels. Here we review the roles of these two metal ions in providing protection against infectious diseases in vivo, and in regulating innate immune responses. In particular, we focus on studies implicating zinc and copper in macrophage antimicrobial pathways, as well as the specific host genes encoding zinc transporters (SLC30A, SLC39A family members) and CTRs (copper transporters, ATP7 family members) that may contribute to pathogen control by these cells
    corecore