10 research outputs found

    A polymerase chain reaction/ligase detection reaction fluorescent microsphere assay to determine Plasmodium falciparum MSP-119 haplotypes

    Get PDF
    The merozoite surface protein-1 (MSP-1) is a blood stage antigen currently being tested as a vaccine against Plasmodium falciparum malaria. Determining the MSP-1(19) haplotype(s) present during infection is essential for assessments of MSP-1 vaccine efficacy and studies of protective immunity in human populations. The C-terminal fragment (MSP-1(19)) has four predominant haplotypes based on point mutations resulting in non-synonymous amino acid changes: E-TSR (PNG-MAD20 type), E-KNG (Uganda-PA type), Q-KNG (Wellcome type), and Q-TSR (Indo type). Current techniques using direct DNA sequencing are laborious and expensive. We present an MSP-1(19) allele-specific polymerase chain reaction (PCR)/ligase detection reaction-fluorescent microsphere assay (LDR-FMA) that allows simultaneous detection of the four predominant MSP-1(19) haplotypes with a sensitivity and specificity comparable with other molecular methods and a semi-quantitative determination of haplotype contribution in mixed infections. Application of this method is an inexpensive, accurate, and high-throughput alternative to distinguish the predominant MSP-1(19) haplotypes in epidemiologic studies

    Broadly reactive antibodies specific for Plasmodium falciparum MSP-119 are associated with the protection of naturally exposed children against infection

    Get PDF
    BACKGROUND: The 19 kDa C-terminal region of Plasmodium falciparum Merozoite Surface Protein-1 is a known target of naturally acquired humoral immunity and a malaria vaccine candidate. MSP- 119 has four predominant haplotypes resulting in amino acid changes labelled EKNG, QKNG, QTSR and ETSR. IgG antibodies directed against all four variants have been detected, but it is not known if these variant specific antibodies are associated with haplotype-specific protection from infection. METHODS: Blood samples from 201 healthy Kenyan adults and children who participated in a 12-week treatment time-to-infection study were evaluated. Venous blood drawn at baseline (week 0) was examined for functional and serologic antibodies to MSP-119 and MSP-142 variants. MSP-119 haplotypes were detected by a multiplex PCR assay at baseline and weekly throughout the study. Generalized linear models controlling for age, baseline MSP-119 haplotype and parasite density were used to determine the relationship between infecting P. falciparum MSP-119 haplotype and variant-specific antibodies. RESULTS: A total of 964 infections resulting in 1,533 MSP-119 haplotypes detected were examined. The most common haplotypes were EKNG and QKNG, followed by ETSR and QTSR. Children had higher parasite densities, greater complexity of infection (\u3e1 haplotype), and more frequent changes in haplotypes over time compared to adults. Infecting MSP-119 haplotype at baseline (week 0) had no influence on haplotypes detected over the subsequent 11 weeks among children or adults. Children but not adults with MSP-119 and some MSP-142 variant antibodies detected by serology at baseline had delayed time-to-infection. There was no significant association of variant-specific serology or functional antibodies at baseline with infecting haplotype at baseline or during 11 weeks of follow up among children or adults. CONCLUSIONS: Variant transcending IgG antibodies to MSP-119 are associated with protection from infection in children, but not adults. These data suggest that inclusion of more than one MSP-119 variant may not be required in a malaria blood stage vaccine

    The Feasibility of a Behavioral Group Intervention after Weight-loss Surgery: A Randomized Pilot Trial

    Get PDF
    BACKGROUND: Formal psychosocial support programs after weight-loss surgery are limited in scope and availability. OBJECTIVE: This randomized pilot study evaluated the feasibility of a postoperative behavioral intervention program. MATERIALS AND METHODS: Postoperative weight-loss surgery patients (N = 50) were recruited from February 2017-July 2017 and randomized to a four-month behavioral program or usual care wait-list. Outcomes evaluated in addition to feasibility included health-related quality of life (Short Form -36), psychosocial functioning and adherence. Secondary outcomes included within-group changes for each outcome. RESULTS: Out of eight possible sessions, intervention participants attended a mean of 4.2 sessions. Intervention group participants experienced greater improvements in the social functioning domain of health-related quality of life compared to usual care. Self-reported dietary adherence in the intervention group remained stable, while usual care group dietary adherence declined. Within the intervention group, participants also reported gains in the physical function, pain and general health aspects of quality life from baseline to post-treatment. No differences in weight, mood or other eating behaviors (e.g., loss of control, emotional eating) were evident between groups. CONCLUSION: Though participation in a postoperative behavioral intervention varied, the program helped participants to maintain aspects of quality of life and self-reported adherence to dietary recommendations. TRIAL REGISTRATION: ClinicalTrials.gov NCT03092479

    Broadly reactive antibodies specific for <it>Plasmodium falciparum</it> MSP-1<sub>19</sub> are associated with the protection of naturally exposed children against infection

    No full text
    Abstract Background The 19 kDa C-terminal region of Plasmodium falciparum Merozoite Surface Protein-1 is a known target of naturally acquired humoral immunity and a malaria vaccine candidate. MSP-119 has four predominant haplotypes resulting in amino acid changes labelled EKNG, QKNG, QTSR and ETSR. IgG antibodies directed against all four variants have been detected, but it is not known if these variant specific antibodies are associated with haplotype-specific protection from infection. Methods Blood samples from 201 healthy Kenyan adults and children who participated in a 12-week treatment time-to-infection study were evaluated. Venous blood drawn at baseline (week 0) was examined for functional and serologic antibodies to MSP-119 and MSP-142 variants. MSP-119 haplotypes were detected by a multiplex PCR assay at baseline and weekly throughout the study. Generalized linear models controlling for age, baseline MSP-119 haplotype and parasite density were used to determine the relationship between infecting P. falciparum MSP-119 haplotype and variant-specific antibodies. Results A total of 964 infections resulting in 1,533 MSP-119 haplotypes detected were examined. The most common haplotypes were EKNG and QKNG, followed by ETSR and QTSR. Children had higher parasite densities, greater complexity of infection (>1 haplotype), and more frequent changes in haplotypes over time compared to adults. Infecting MSP-119 haplotype at baseline (week 0) had no influence on haplotypes detected over the subsequent 11 weeks among children or adults. Children but not adults with MSP-119 and some MSP-142 variant antibodies detected by serology at baseline had delayed time-to-infection. There was no significant association of variant-specific serology or functional antibodies at baseline with infecting haplotype at baseline or during 11 weeks of follow up among children or adults. Conclusions Variant transcending IgG antibodies to MSP-119 are associated with protection from infection in children, but not adults. These data suggest that inclusion of more than one MSP-119 variant may not be required in a malaria blood stage vaccine.</p

    High-Throughput Variation Detection and Genotyping Using Microarrays

    No full text
    The genetic dissection of complex traits may ultimately require a large number of SNPs to be genotyped in multiple individuals who exhibit phenotypic variation in a trait of interest. Microarray technology can enable rapid genotyping of variation specific to study samples. To facilitate their use, we have developed an automated statistical method (ABACUS) to analyze microarray hybridization data and applied this method to Affymetrix Variation Detection Arrays (VDAs). ABACUS provides a quality score to individual genotypes, allowing investigators to focus their attention on sites that give accurate information. We have applied ABACUS to an experiment encompassing 32 autosomal and eight X-linked genomic regions, each consisting of ∼50 kb of unique sequence spanning a 100-kb region, in 40 humans. At sufficiently high-quality scores, we are able to read ∼80% of all sites. To assess the accuracy of SNP detection, 108 of 108 SNPs have been experimentally confirmed; an additional 371 SNPs have been confirmed electronically. To access the accuracy of diploid genotypes at segregating autosomal sites, we confirmed 1515 of 1515 homozygous calls, and 420 of 423 (99.29%) heterozygotes. In replicate experiments, consisting of independent amplification of identical samples followed by hybridization to distinct microarrays of the same design, genotyping is highly repeatable. In an autosomal replicate experiment, 813,295 of 813,295 genotypes are called identically (including 351 heterozygotes); at an X-linked locus in males (haploid), 841,236 of 841,236 sites are called identically

    Redox Regulation of Photosynthetic Genes

    No full text

    Environmental, genetic and epigenetic contributions to cocaine addiction

    No full text

    Developing the scientific framework for urban geochemistry

    No full text
    corecore