
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

Population and Quantitative Health Sciences 
Publications Population and Quantitative Health Sciences 

2012-08-21 

Broadly reactive antibodies specific for Plasmodium falciparum Broadly reactive antibodies specific for Plasmodium falciparum 

MSP-119 are associated with the protection of naturally exposed MSP-119 are associated with the protection of naturally exposed 

children against infection children against infection 

Arlene E. Dent 
Case Western Reserve University 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/qhs_pp 

 Part of the Epidemiology Commons, Health Services Research Commons, Immunology and Infectious 

Disease Commons, and the Parasitic Diseases Commons 

Repository Citation Repository Citation 
Dent AE, Moormann AM, Yohn CT, Kimmel RJ, Sumba PO, Vulule J, Long CA, Narum DL, Crabb BS, Kazura 
JW, Tisch DJ. (2012). Broadly reactive antibodies specific for Plasmodium falciparum MSP-119 are 
associated with the protection of naturally exposed children against infection. Population and 
Quantitative Health Sciences Publications. https://doi.org/10.1186/1475-2875-11-287. Retrieved from 
https://escholarship.umassmed.edu/qhs_pp/1048 

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Population and 
Quantitative Health Sciences Publications by an authorized administrator of eScholarship@UMMS. For more 
information, please contact Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/qhs_pp
https://escholarship.umassmed.edu/qhs_pp
https://escholarship.umassmed.edu/qhs
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/qhs_pp?utm_source=escholarship.umassmed.edu%2Fqhs_pp%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/740?utm_source=escholarship.umassmed.edu%2Fqhs_pp%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/816?utm_source=escholarship.umassmed.edu%2Fqhs_pp%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/33?utm_source=escholarship.umassmed.edu%2Fqhs_pp%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/33?utm_source=escholarship.umassmed.edu%2Fqhs_pp%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/983?utm_source=escholarship.umassmed.edu%2Fqhs_pp%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1186/1475-2875-11-287
https://escholarship.umassmed.edu/qhs_pp/1048?utm_source=escholarship.umassmed.edu%2Fqhs_pp%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Lisa.Palmer@umassmed.edu


This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted
PDF and full text (HTML) versions will be made available soon.

Broadly reactive antibodies specific for Plasmodium falciparum MSP-119 are
associated with the protection of naturally exposed children against infection

Malaria Journal 2012, 11:287 doi:10.1186/1475-2875-11-287

Arlene E Dent (arlene.dent@case.edu})
Ann M Moormann (ann.moormann@umassmed.edu})

Christopher T Yohn (chrisyohn@gmail.com})
Rhonda J Kimmel (rhonda.kimmel@case.edu})
Peter O Sumba (odadakasumba@yahoo.com})

John Vulule (ulule@yahoo.com})
Carole A Long (clong@niaid.nih.gov})

David L Narum (dnarum@niaid.nih.gov})
Brendan S Crabb (crabb@burnet.edu.au})

James W Kazura (james.kazura@case.edu})
Daniel J Tisch (daniel.tisch@case.edu})

ISSN 1475-2875

Article type Research

Submission date 31 May 2012

Acceptance date 15 August 2012

Publication date 21 August 2012

Article URL http://www.malariajournal.com/content/11/1/287

This peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see
copyright notice below).

Articles in Malaria Journal are listed in PubMed and archived at PubMed Central.

For information about publishing your research in Malaria Journal or any BioMed Central journal, go
to

http://www.malariajournal.com/authors/instructions/

For information about other BioMed Central publications go to

Malaria Journal

© 2012 Dent et al. ; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:arlene.dent@case.edu}
mailto:ann.moormann@umassmed.edu}
mailto:chrisyohn@gmail.com}
mailto:rhonda.kimmel@case.edu}
mailto:odadakasumba@yahoo.com}
mailto:ulule@yahoo.com}
mailto:clong@niaid.nih.gov}
mailto:dnarum@niaid.nih.gov}
mailto:crabb@burnet.edu.au}
mailto:james.kazura@case.edu}
mailto:daniel.tisch@case.edu}
http://www.malariajournal.com/content/11/1/287
http://www.malariajournal.com/authors/instructions/
http://creativecommons.org/licenses/by/2.0


http://www.biomedcentral.com/

Malaria Journal

© 2012 Dent et al. ; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.biomedcentral.com/
http://creativecommons.org/licenses/by/2.0


Broadly reactive antibodies specific for Plasmodium 

falciparum MSP-119 are associated with the 

protection of naturally exposed children against 

infection 

Arlene E Dent
1,2,*

 

Email: arlene.dent@case.edu 

Ann M Moormann
3
 

Email: ann.moormann@umassmed.edu 

Christopher T Yohn
1
 

Email: chrisyohn@gmail.com 

Rhonda J Kimmel
1
 

Email: rhonda.kimmel@case.edu 

Peter O Sumba
4
 

Email: odadakasumba@yahoo.com 

John Vulule
4
 

Email: vulule@yahoo.com 

Carole A Long
5
 

Email: clong@niaid.nih.gov 

David L Narum
6
 

Email: dnarum@niaid.nih.gov 

Brendan S Crabb
7
 

Email: crabb@burnet.edu.au 

James W Kazura
1
 

Email: james.kazura@case.edu 

Daniel J Tisch
1,8

 

Email: daniel.tisch@case.edu 

1
 Center for Global Health and Diseases, Case Western Reserve University, 

Cleveland, OH, USA 

2
 Pediatrics Department, Rainbow Babies and Children’s Hospital, Cleveland, 

OH, USA 

3
 Pediatrics Department, University of Massachusetts Medical School, Worcester, 

MA, USA 



4
 Kenya Medical Research Institute, Kisumu, Kenya 

5
 Laboratory of Malaria and Vector Research, National Institute of Allergy and 

Infectious Diseases, National Institutes of Health, Bethesda, MD, USA 

6
 Malaria Vaccine Development Branch, National Institute of Allergy and 

Infectious Diseases, National Institutes of Health, Bethesda, MD, USA 

7
 Burnet Institute of Medical Research, Melbourne, Australia 

8
 Department of Epidemiology and Biostatistics, Case Western Reserve 

University, Cleveland, OH, USA 

*
 Corresponding author. Pediatrics Department, Rainbow Babies and Children’s 

Hospital, Cleveland, OH, USA 

Abstract 

Background 

The 19 kDa C-terminal region of Plasmodium falciparum Merozoite Surface Protein-1 is a 

known target of naturally acquired humoral immunity and a malaria vaccine candidate. MSP-

119 has four predominant haplotypes resulting in amino acid changes labelled EKNG, QKNG, 

QTSR and ETSR. IgG antibodies directed against all four variants have been detected, but it 

is not known if these variant specific antibodies are associated with haplotype-specific 

protection from infection. 

Methods 

Blood samples from 201 healthy Kenyan adults and children who participated in a 12-week 

treatment time-to-infection study were evaluated. Venous blood drawn at baseline (week 0) 

was examined for functional and serologic antibodies to MSP-119 and MSP-142 variants. 

MSP-119 haplotypes were detected by a multiplex PCR assay at baseline and weekly 

throughout the study. Generalized linear models controlling for age, baseline MSP-119 

haplotype and parasite density were used to determine the relationship between infecting P. 

falciparum MSP-119 haplotype and variant-specific antibodies. 

Results 

A total of 964 infections resulting in 1,533 MSP-119 haplotypes detected were examined. The 

most common haplotypes were EKNG and QKNG, followed by ETSR and QTSR. Children 

had higher parasite densities, greater complexity of infection (>1 haplotype), and more 

frequent changes in haplotypes over time compared to adults. Infecting MSP-119 haplotype at 

baseline (week 0) had no influence on haplotypes detected over the subsequent 11 weeks 

among children or adults. Children but not adults with MSP-119 and some MSP-142 variant 

antibodies detected by serology at baseline had delayed time-to-infection. There was no 

significant association of variant-specific serology or functional antibodies at baseline with 

infecting haplotype at baseline or during 11 weeks of follow up among children or adults. 



Conclusions 

Variant transcending IgG antibodies to MSP-119 are associated with protection from infection 

in children, but not adults. These data suggest that inclusion of more than one MSP-119 

variant may not be required in a malaria blood stage vaccine. 

Keywords 

Plasmodium falciparum, Antibodies, Merozoite surface protein, Malaria infection, Children 

Background 

Merozoite Surface Protein-1 (MSP-1) is the most abundant protein found on the surface of 

blood stage Plasmodium falciparum merozoites, and has been considered a candidate for a 

blood stage malaria vaccine. The protein is expressed late in the blood stage cycle as a ~200 

kDa precursor protein attached to the merozoite surface via a C-terminal 

glycosylphosphatidylinositol anchor. Full-length MSP-1 undergoes primary proteolytic 

processing just prior to schizont rupture, to produce a complex of four MSP-1 fragments that 

remain non-covalently associated on the merozoite surface [1]. During merozoite invasion of 

the erythrocyte, a MSP-142 fragment is further processed to produce MSP-133 and MSP-119 

[1-3]. MSP-119 remains on the merozoite surface during invasion and is readily detectable in 

newly infected erythrocytes [2]. The Pfmsp1 gene can be divided into conserved, semi-

conserved and variable blocks based on comparisons of deduced amino acid sequences of 

various clones and field isolates [4]. Block 17 encodes MSP-119 that includes 98 highly 

conserved amino acids, with the exception of residues 1644 (E/Q), 1691(T/K), 1700 (S/N), 

and 1701 (R/G). Non-synonymous changes at these positions result in four predominant 

haplotypes: ETSR (PNG-MAD20 type), EKNG (Uganda-PA type), QKNG (Wellcome type), 

and QTSR (Indo type) [5-8]. 

MSP-119 is thought to play a role in erythrocyte invasion as naturally acquired antibodies 

directed against it can inhibit this process [9-11] and are associated with protection against 

malaria infection and disease [5,12-19]. However, it is unclear whether protective immune 

responses are MSP-119 variant-specific or if prior exposure to one infecting haplotype 

conveys cross protection from another haplotype. Some degree of cross protection has been 

demonstrated in experimental vaccine studies of P. falciparum challenged monkeys [20,21]. 

Determining the MSP-119 haplotype(s) present during naturally occurring infection is 

essential for assessment of MSP-1 vaccine efficacy and more generally, studies of variant 

transcending protective immunity in human populations. 

A phase 2 MSP-1 vaccine trial recently conducted in western Kenya showed no evidence of 

protective efficacy [22]. The vaccine contained 3D7 MSP-142, which includes the ETSR 

variant of MSP-119. However, the predominant haplotypes in this region have been reported 

to encode the EKNG and QKNG [23,24], underscoring the potential significance of 

understanding whether variant-specific immunity is operative. The current study reports the 

temporal stability of infecting MSP-119 haplotypes among individuals naturally infected with 

P. falciparum malaria in this area, and determines if changes in haplotype were affected by 

age, infection density, complexity of infection, and pre-existing variant-specific antibody 

responses. 



Methods 

Study population and design 

One hundred and one healthy adults (age range ≥18 to 79 years; average 39.6 years) and 100 

healthy children (age range one to 14 years; average 7.7 years) residing in the sub-location of 

Kanyawegi, Nyanza Province, Kenya were enrolled in a treatment time-to-infection study in 

July 2003. Malaria is holoendemic in this area, and transmission is relatively high in July. All 

study participants were afebrile and had normal age-adjusted haemoglobin levels. Venous 

blood samples were collected at baseline for immunologic and parasite genotyping studies. 

Witnessed age- and weight-appropriate six-dose regimens of Coartem® 

(artemether/lumefantrine) were given to all study participants at baseline regardless of 

malaria infection status determined by blood smear (BS). Weekly finger-prick blood samples 

were collected for 11 consecutive weeks after treatment. Ethical approval for the study was 

obtained from the Institutional Review Board for human investigations at University Hospital 

Case Medical Center and the Ethical Review Committee of the Kenya Medical Research 

Institute. Adult participants signed a written consent form in English or Duhluo (the local 

language); parents or guardians signed in the case of minors <15 years. 

Malaria diagnosis by blood smear 

Thick and thin BS were prepared, fixed in 100% methanol, stained with 5% Giemsa, and 

examined by light microscopy for P. falciparum-infected erythrocytes. A slide was deemed 

negative when no parasites were seen after counting microscopic fields containing at least 

200 leukocytes. The density of parasitaemia was expressed as the number of asexual P. 

falciparum/μL blood assuming a leukocyte count of 8,000/μL. 

MSP-119 haplotype detection by PCR/LDR-FMA 

DNA was extracted from 200 μL of venous blood and parasite cultures (3D7 = PNG-MAD20 

and K1 = Wellcome strains, as positive controls) using QIAamp DNA blood mini kit (Qiagen 

Corp, Valencia, CA, USA). PCR amplification was performed using MSP-119 specific and P. 

falciparum small subunit rRNA specific primers for 27 cycles (for quantification of parasite 

density) and 35 cycles (for determination of infection) as previously described [23]. The 

Ligase Detection Reaction – Fluorescent Microsphere Assay (LDR-FMA) was performed as 

previously described [23]. Briefly, 1 μL of PCR product (from either 27 or 35 cycle PCR) 

was ligased with four allele specific probes and two fluorescently labelled conserved 

sequence probes to detect the four possible haplotypes. Five μL of this LDR was then 

hybridized to ~250 Luminex® FlexMAP™ microspheres from each allelic set (total 

number = 5). Reporter streptavidin-R-phycoerythrin (Molecular Probes, Eugene, OR, USA) 

was added and detection of allele-specific LDR microsphere labelled hybrid complexes was 

performed using a BioPlex array reader (Bio-Rad Laboratories, Hercules, CA, USA). Each 

Luminex® fluorescent microsphere emits a unique fluorescent ―classification‖ signal across 

the range of 658–712 nm. ―Reporter‖ fluorescent signals from R-phycoerythrin are detected, 

classified into the allele-specific bins, and reported as median fluorescent intensity (MFI) by 

the BioPlex array reader and BioPlex Manager 3.0 software. Haplotype assignment was made 

based on allele-specific MFI as described [23]. Importantly, if four alleles (Q, E, KNG and 

TSR) were detected in a single sample, a conservative assumption was made that only two 



haplotypes were present. Therefore, the maximum number of haplotypes assigned to any 

infection was two. 

IgG antibodies to MSP-119 measured by ELISA 

IgG antibodies to recombinant PfMSP-119 corresponding to the EKNG, QKNG, ETSR and 

QTSR variants (expressed in Saccharomyces cerevisiae and provided by the Malaria 

Research and Reference Reagent Resource Center, Manassas, VA, USA [25]) were 

quantified by ELISA as described previously [26]. Briefly, Immulon 4 plates were coated 

with 0.1 μg/mL of each MSP-119 protein. Plasma samples from nine North American adults 

never exposed to malaria were used as the negative controls. Plasma pooled from four known 

malaria immune Kenyan adults was used to create a standard curve for each plate tested. The 

value obtained with a 1:50 dilution of the positive pool was designated as 100 arbitrary units 

(AU), 1:100 dilution as 50 AU, 1:200 dilution as 25 AU, 1:500 dilution as 10 AU, 1:1,000 

dilution 5 AU, and 1:2,000 dilution as 1 AU. A four-parameter standard fit curve was 

constructed from the positive control plasma pool and applied to sample values. Positive 

values were greater than the mean +3 SD of the value of the individual negative control 

plasma samples. 

IgG antibodies to MSP-142 measured by Luminex® multiplex assay 

Recombinant proteins expressed in Escherichia coli were kindly provided by Carole Long 

and Sanjay Singh (3D7/ETSR and FVO/QKNG) and David Narum (FUP/EKNG) (NIAID, 

Bethesda, MD, USA). Carboxylated microsperes (Luminex, Austin, TX, USA) were coupled 

to malaria antigens using the manufacturer’s protocol and as described [27,28]. Briefly, 0.5 

μg of recombinant MSP-142 protein was coupled to 6.1 x 10
5
 pre-activated microspheres in 

500 μL of 50 mM MES pH 5.0 coupling buffer, vortexed and incubated for two hours at 

room temperature. Microspheres were washed in PBS, 0.1% BSA, 0.02% Tween-20, 0.05% 

azide, pH 7.4 (blocking/storage buffer). Antigen-specific IgG was detected by incubating 

1,000 beads of each antigen per well with 1:100 plasma dilution in a final volume of 100 uL. 

After washing, detection with a 1:200 dilution of R-PE-conjugated goat F(ab’)2 anti-human 

IgG antibody (Jackson Immunoresearch, West Grove, PA, USA) was added. At least 75 

beads of each antigen were then acquired by the Bioplex reader (Bio-Rad, Hercules, CA, 

USA). Positive and negative controls were as described for MSP-119 ELISA. Results are 

expressed as MFI and positive values were assigned to samples with an MFI greater than the 

mean +3 SD of the value of the individual negative control plasma samples. 

MSP-119 invasion inhibitory antibodies (MSP-119 IIA) 

Methods to quantify MSP-119 IIA were as described previously [18,29,30]. Briefly, D10-

PfM3’ which encodes the MSP-119 MAD20/3D7/ETSR haplotype, and an isogenic D10-

PcMEGF parasite line in which the antigenically unrelated murine Plasmodium chabaudi 

orthologue replaces the Pf MSP-119 region were tested in parallel. Ring-stage parasites were 

synchronized twice by sorbitol lysis and allowed to mature to late trophozoite/schizont 

stages. Parasites were adjusted to 4% haematocrit with 0.5% P. falciparum-infected red cells, 

and 50 μL aliquots were placed in 96-well, flat-bottom microtiter plates with an equal volume 

of 1:5 prediluted plasma in culture medium (final plasma dilution 1:10, final volume 100 μL). 

The same batch of prediluted plasma was added to the two parasite lines in the same assay. 

The cultures were incubated for 26 hours to allow for schizont rupture and merozoite 

invasion. Twenty-five μL of resuspended cultures was removed, fixed with 0.25% 



gluteraldehyde in PBS for 45 minutes, and placed in 1 μg of Hoechst 33342 (HO) stain 

(Molecular Probes, Eugene, OR, USA) in 400 μL 1x PBS for >24 hours at 4 °C [29,31]. 

Stained cells were examined using the UV laser on a BD LSR II flow cytometer to collect 

data from a minimum of 5x10
4
 cells using Becton-Dickinson FACS Diva 5.01. Ring-stage 

parasitaemia was calculated by quantifying singly infected erythrocytes plus multiply 

infected erythrocytes (quantified as having two intracellular rings) according to flow 

cytometry gating previously described [31]. FlowJo 8.5.1 was used to analyse cytometry data. 

The mean number ring-stage parasitaemia for duplicate wells was calculated and results 

expressed as a percentage of the ring-stage parasitaemia of non-immune control plasma 

(derived from non-malaria exposed adults) in parallel cultures. The percentage change of 

invasion inhibition antibodies specifically attributable to anti-MSP-119 antibodies (MSP-119 

IIA) was calculated by subtracting the percentage of invasion of D10-PfM3’ relative to non-

immune controls from the percent invasion of D10-PcMEGF relative to non-immune 

controls. A positive response was defined as ≥10% inhibition attributable to MSP-119 IIA. 

Statistical analysis 

Parasite density was compared across groups using the Kruskal-Wallis test. Parasite 

haplotype distribution across groups was compared using chi square tests and generalized 

estimating equations. Generalized linear models with robust estimators and exchangeable 

correlation structure were used to characterize parasite density, frequency of parasite 

haplotype change over time, and relationship between antibody responses and infecting 

haplotypes over time. Time-to-infection was compared between baseline variant-specific 

antibodies (responders vs non responders and high levels vs low levels) using Kaplan-Meier 

curves, Wilcoxon and log rank tests. All statistical analysis was performed using Statistical 

Analysis Software (SAS®) version 9.2 (Cary, NC, USA). 

Results 

Analysis of haplotype prevalence, complexity of infection and parasite density was 

performed using data obtained from all 201 study participants. Data from 25 study 

participants who were BS negative but positive by the more sensitive PCR LDR-FMA for 

blood stage P. falciparum [23] two weeks after administration of Coartem were presumed to 

have liver stage infection at baseline. These 25 individuals (three adults and 22 children) 

were excluded from analyses which compared differences between baseline and follow-up 

haplotypes with respect to age, P. falciparum density, antibody responses, and time-to-

infection (n = 176 for these analyses). For clarity, the number of participants analysed is 

stated with the specific results. 

Prevalence and density of infection by BS and PCR/LDR-FMA (n = 201) 

Initial malaria prevalence in this population of healthy, asymptomatic individuals was 58% 

by BS and 57% by PCR/LDR-FMA (Figure 1A and 1B). The proportion of infected 

individuals by BS remained lower than week 0 (baseline) throughout the subsequent 11 

weekly blood samplings. In contrast, the proportion of infected individuals detected by 

PCR/LDR-FMA showed that baseline infection prevalence was reached after week 7 and 

stable thereafter. Parasite density was calculated for BS + and PCR/LDR-FMA + samples 

(Figure 1C and 1D). There was no statistical difference for parasite densities measured by BS 

after week 2 (weeks 3–11; Kruskal-Wallis test, p = 0.90). However, there was an increase in 



parasite densities after week 2 when measured by PCR/LDR-FMA (weeks 3–11; Kruskal-

Wallis test, p < 0.0001). This most likely reflects the increased sensitivity of PCR/LDR-FMA 

compared to microscopy. As expected, children at baseline had greater parasite densities than 

adults (3,740 vs 148 P. falciparum/μL by BS, p < 0.001; 6,325 vs 1,298 MFI by PCR/LDR-

FMA, p < 0.001 Kruskal-Wallis test). 

Figure 1 Prevalence and parasite density by blood smear (BS) and PCR/LDR-FMA. 
Panels A and B illustrate the proportion of study participants with infections measured by BS 

(A) and PCR/LDR-FMA (B) each week of the study. The parasite density (mean + SD) was 

calculated from infection positive samples as measured by BS (C) and PCR/LDR-FMA (D). 

No statistical difference was detected in BS parasite densities between weeks 3–11, but an 

increase in parasite densities measured by PCR/LDR-FMA was detected (weeks 3–11; 

Kruskal-Wallis test, p < 0.0001). The number of infected samples by BS by week: 0 (n = 116), 

1 (n = 0), 2 (n = 0), 3 (n = 10), 4 (n = 36), 5 (n = 61), 6 (n = 69), 7 (n = 80), 8 (n = 72), 9 (n = 79), 

10 (n = 75), 11 (n = 67). The number of infected samples by PCR/LDR-FMA by week: 0 

(n = 112), 1 (n = 39), 2 (n = 25), 3 (n = 52), 4 (n = 73), 5 (n = 81), 6 (n = 83), 7 (n = 99), 8 

(n = 85), 9 (n = 103), 10 (n = 118), 11 (n = 94) 

Complexity of infection (COI; n = 201) 

Block 17 of the Pfmsp1 gene has four alleles, E, Q, KNG, and TSR, four distinct haplotypes 

referred to as EKNG, QKNG, ETSR, and QTSR. The proportion of individuals each week 

that had two, three or four alleles was examined (Figure 2). As expected, when P. falciparum 

density was low because of recent drug elimination, the COI was diminished compared to 

baseline (before Coartem treatment), dropping from 60% to 24% of infections with two or 

more alleles. Baseline complexity levels were reached by week 5 and remained relatively 

stable throughout the remaining study period. Children tended to be infected with more 

alleles at any given week compared to adults (e g, 75% of children had >2 alleles at baseline 

vs 34% of adults, p < 0.001). 

Figure 2 Proportion of alleles in malaria infected samples reflecting complexity of 

infection. Baseline (week 0) distribution of allele frequencies was re-established by weeks 5 

(no statistical difference between baseline and week 5) 

Generalized estimating equations were used to model single vs multiple haplotypes over time 

according to 1) parasite density at baseline or first P. falciparum infection during follow-up; 

2) current parasite density; 3) prior (lagged) parasite density; 4) total number of infections 

within an individual; and, 5) age, while accounting for repeated observations. There was no 

predictive value found of baseline parasite density for COI. However, individuals with 

multiple haplotypes at baseline tended to have multiple haplotypes detected during the 

follow-up period (p = 0.001-0.081). Finally, children were 12.1 times more likely to have 

multiple haplotype infections compared to adults (95% CI 4.5-32.4; p < 0.001). 

Haplotype prevalence at baseline and follow-up (n = 201) 

Of all 964 P. falciparum + samples, the majority of individual haplotypes among a total 1,533 

was EKNG (n = 736) followed by QKNG (n = 517), ETSR (n = 148) and QTSR (n = 132). 

There were multiple haplotypes in 570 infections. 



For all subsequent analyses, ―no infection‖ and multiple haplotype combinations (such as 

EKNG/QKNG, EKNG/ETSR etc.) were included. Figure 3 illustrates the overall prevalence 

of each haplotype group at baseline and first-detected infection at weeks 3–11 (n = 176). No 

infection (43%) was most common at baseline followed by EKNG/QKNG (18%), EKNG 

(17%), EKNG/QTSR (8%), QKNG (6%), EKNG/ETSR (4%), ETSR (3%) and QKNG/ETSR 

(2%). Similarly, the most frequent haplotype first detected during follow-up was 

EKNG/QKNG (28%), EKNG (23%), QKNG (16%), no infection (16%), ETSR (7%), 

QKNG/ETSR (5%), EKNG/QTSR (3%), EKNG/ETSR (2%) and QTSR (1%). There were no 

statistical differences between the prevalence of baseline haplotypes and haplotypes detected 

during follow-up. The only significant difference was that the prevalence of ―no infections‖ 

was lower during the follow-up period compared to baseline (p < 0.001). 

Figure 3 Prevalence of haplotypes at baseline and the first detectable haplotype during 

the follow-up period for each study participant. Baseline prevalence is indicated by black 

columns and first follow-up period haplotype detected is indicated by grey columns. * 

indicates statistically significant difference (p < 0.001; Chi-square) between baseline and 

follow-up proportion of individuals with no infection 

Chi-squared analyses were stratified by adult vs child to compare baseline vs follow-up 

infecting haplotype groups (n = 176). In the follow-up period, 23% of adults had no infection 

whereas 6% of the children had no infection (p = 0.002). There was no difference in the 

frequency of the various haplotypes between adults and children found to be P. 

falciparum + during follow-up (Table 1). Haplotype(s) detected during follow-up were not 

affected by baseline haplotype(s). For example, of 57 individuals infected solely with EKNG 

at baseline, 37% were re-infected during follow up with EKNG, 30% with QKNG, 18% with 

EKNG/QKNG, 7% with ETSR, 2% with EKNG/QTSR (2%), and 7% were not re-infected. 

This pattern is similar to that seen in overall haplotype infections at baseline and during 

follow up. Similarly, of 75 individuals with no infection at baseline, 25% of infections 

detected during follow-up were EKNG, 25% QKNG, 15% EKNG/QKNG and 9% ETSR , 

and 25% had no infection 

Table 1 Follow-up period haplotype prevalence in children and adults with infections 

 EKNG QKNG ETSR QTSR 

Children 73% 56% 18% 3% 

Adults 60% 60% 16% 5% 

Haplotype change over time (n = 176) 

Generalized linear models were used to quantify haplotype stability according to baseline 

haplotype and parasite density, follow-up infection haplotype and parasite density, and age 

group. Table 2 describes the number of changes in haplotypes according to the number of 

infections experienced during follow up from weeks 3 through 11 (e g, change = 1 for an 

individual with a single EKNG haplotype infection at week 3 and a single QKNG haplotype 

at week 7). There was no predictive value found of parasite density or individual haplotype at 

baseline or during follow up for changes in haplotypes over time. Children had significantly 

more haplotype changes (94%) compared to adults (67%; p < 0.001). An average of 2.8 

haplotype changes was observed among children vs 1.3 among adults. 

Table 2 Stability of haplotypes detected during the follow-up period (weeks 3–11) 



 No Change 1 Changes 2 Changes 3 Changes 4 Changes 5 Changes 6 Changes 

2 Infections 20 (44%) 25 (56%)      

3 Infections 4 (15%) 4 (15%) 0     

4 Infections 3 (14%) 16 (59%) 3 (11%) 0    

5 Infections 1 (8%) 1(8%) 4 (33%) 4 (33%) 0   

6 Infections 0 2 (11%) 4 (22%) 5 (28%) 6 (33%) 1 (6%)  

7 Infections 1 (3%) 4 (11%) 4 (11%) 8 (23%) 8 (23%) 8 (23%) 2 (6%) 

Number of haplotype changes is displayed by number of infections detected. Individuals who 

had one or no infections detected during the follow-up period were excluded (n = 40). 

Baseline haplotype and time-to-infection (n = 176) 

Kaplan-Meier curves and log rank tests comparing individuals infected at baseline with any 

haplotype and time-to-infection (with any haplotype) found no differences. Additional 

analysis grouping those infected with the most prevalent haplotypes (EKNG and QKNG) vs 

less prevalent haplotypes (ETSR and QTSR) also did not demonstrate any difference in time-

to-infection (p = 0.37). Thus baseline haplotype infection had no observable effect on 

subsequent infecting haplotypes or time-to-infection. 

Baseline and follow-up haplotype and parasite density (n = 201) 

Haplotype prevalence by week is displayed in Figure 4A. Each haplotype’s prevalence is 

relatively stable throughout the study period. EKNG and QKNG exhibit some variability in 

weeks 4 and 5 as new infections were detected in the population. To visualize the relationship 

between haplotype and parasite density, each infecting haplotype was adjusted for parasite 

density (P. falciparum small subunit RNA MFI of the LDR-FMA) and totalled by week. If 

multiple haplotypes were present in a single infection, a proportional parasite density was 

attributed to each haplotype. For example, if an infection contained similar quantities of 

QKNG and EKNG determined by allele specific MFI, then 50% of the P. falciparum density 

(measured by P. falciparum small unit RNA MFI) was assigned to QKNG and 50% to 

EKNG. If an infection contained both QKNG and EKNG but the former was predominant, 

then 75% of the P. falciparum density was assigned to QKNG and 25% to EKNG [23]. 

Figure 4B displays these data and illustrates the gradual resurgence of predominant EKNG 

and QKNG haplotypes over time, while ETSR and QTSR haplotypes remained low and 

comparably stable. 

Figure 4 Haplotype prevalence and weighted density. Panel A illustrates prevalence of the 

four haplotypes in each week. Panel B illustrates the cumulative infecting P. falciparum 

density associated with each haplotype by week for the study population 

As previously stated, children had higher baseline parasite densities compared to adults. 

Individuals infected with multiple haplotypes at baseline tended to have higher parasite 

densities compared to individuals infected with single haplotypes at baseline (MFI 8,140 vs 

3,578, t = −4.76, p < 0.001; n = 176). Because children had higher parasite densities, they 

tended to have multiple haplotypes detected (see section regarding symptomatic malaria). 

However, no differences were observed in baseline parasitaemia according to individual 

baseline haplotype. During the follow-up period, parasite density remained greater in children 

than adults (4,106 vs 1,824, t = −2.65, p < 0.001). However, baseline haplotypes did not 



predict re-infection parasite density (in individuals who had both baseline and follow-up 

period infections). At the first time of re-infection, parasite density was consistently lower 

than at baseline. The amount of decrease, however, was not related to the baseline density 

(R
2 = 0.03). 

Individuals with multiple haplotype infections during the follow-up period had greater 

parasite density compared to individuals with single haplotype infections. QKNG/ETSR, 

EKNG/ETSR or EKNG/QTSR infections had significantly greater density (MFI range 4,704-

8,879) compared to EKNG/QKNG, QKNG, EKNG, ETSR, and QTSR (MFI 572–3,216) 

(p < 0.001, ANOVA). Using these estimates of parasite density in a generalized linear model 

controlling for 1) baseline haplotype and density; 2) follow-up infection haplotype and 

density; and, 3) age, it was found that age and haplotype complexity remained predictors of 

parasite density (p = 0.081 and 0.024, respectively). Specifically, follow-up infections 

containing QKNG/ETSR resulted in greatest parasite densities (mean MFI 9,521), but this 

was not significantly different from the other combination haplotypes (EKNG/ETSR or 

EKNG/QTSR) exhibiting greater densities than single haplotype infections. With these data, 

parasite density over time was then examined. Longitudinal models were created to estimate 

parasite density after first infection during follow up. It was found that the parasite density 

was unstable and did not follow an observable trend; there was poor model fit. 

Relationship between baseline variant-specific antibody responses, haplotype-

specific infections, and time-to-infection (n = 176) 

IgG antibodies directed against MSP-119 (EKNG, QKNG, ETSR, and QTSR) and MSP-142 

(EKNG, QKNG, and ETSR) were measured by ELISA and Luminex® multiplex assay using 

plasma samples obtained at baseline. Additionally, functional MSP-119 IIA (ETSR) was 

measured. No plasma samples were available from the follow-up period. There was no 

correlation between MSP-119 IIA (ETSR only) and antibodies to MSP-142 (ETSR; 

kappa = 0.0131) or MSP-119 (ETSR; R
2 = 0.0147) measured by serology, as previously 

demonstrated [18,32]. 

Figure 5A and 5B illustrate the proportion of serologically measured variant-specific 

antibody responders to recombinant MSP-119 and MSP-142. First, how many variants an 

individual responded to was examined. Interestingly, many participants had no detectable 

variant-specific antibodies (approximately 40% and 60% of participants did not respond to 

MSP-119 or MSP-142). There were no statistical differences in percent responders detected 

between adults and children or between responders with antibodies to multiple variants vs no 

variants. With regard to the frequency of variant-specific responses among those individuals 

who were responders, there was no statistical difference detected among variants of MSP-119 

and MSP-142 or between adults and children (Figure 6A and 6B). The results were consistent 

whether antibodies against MSP-119 variants were measured by ELISA or antibodies against 

MSP-142 variants were measured by Luminex® multiplex assay. 

Figure 5 Distribution of variant-specific antibody responders for MSP-119 and MSP-142 
at baseline. All responders (black columns), adults (grey columns) and children (white 

columns) frequencies are displayed for either MSP-119 variants (panel A) or MSP-142 variants 

(panel B). Note that MSP-142 QTSR was not tested, thus the maximum number of antigens 

participants could respond to is three. No statistical difference between frequency of adult 

and children was detected for any group 



Figure 6 Distribution of variant-specific antibody responders for MSP-119 and MSP-142 
at baseline stratified by variant. All responders (black columns), adults (grey columns) and 

children (white columns) frequencies are displayed for either MSP-119 variants (panel A) or 

MSP-142 variants (panel B). MSP-142 QTSR was not examined. No statistical difference 

between prevalence in adult and children was detected for any variant 

Children had a shorter time-to-infection compared to adults, presumably due to less well 

developed clinical immunity (average week of infection for children was 5.3 (BS) and 2.5 

(PCR/LDR-FMA) vs adults 7.4 (BS) and 5.0 (PCR/LDR-FMA)). Children who were MSP-

119 variants responders at baseline had a delayed time-to-infection as measured by BS 

compared to children with non-responders (Figure 7). Children with high-level antibodies 

(upper tercile) to MSP-142 FUP/EKNG (wilcoxan test p = 0.035; log-rank p = 0.057) or upper 

two tercile antibodies to MSP-142 FVO/QKNG (log-rank p = 0.0324), had delayed time-to-

infection as measured by BS, whereas those with upper tercile antibodies to MSP-142 

3D7/ETSR demonstrated no statistically significant delay to infection (log-rank p = 0.3760). 

Adults with antibodies to MSP-119 or MSP-142 variants had no delay in time-to-infection 

compared to non-responders. When time-to-infection was measured by PCR/LDR-FMA, 

similar trends were observed but statistically significant delays in time-to-infection were only 

observed in children responders to MSP-119 ETSR (log-rank p = 0.0223) and QTSR (log-rank 

p = 0.0350) but not QKNG (log-rank p = 0.0617) or EKNG log-rank (p = 0.3692). Children 

with antibodies to MSP-142 FUP/EKNG (log-rank p = 0.0143) but not 3D7/ETSR (log-rank 

p = 0.8) or FVO/QKNG (log-rank p = 0.1) had delayed time-to-infection compared to children 

with no variant-specific antibodies. Adults with antibodies to MSP-119 or MSP-142 variants 

had no delay in time-to-infection compared to non-responders. Children with antibodies to 

multiple variants had no difference in time-to-infection compared with children with 

antibodies to one variant. No change in time-to-infection (measured by BS or PCR/LDR-

FMA) as related to MSP119 IIA (ETSR) responses was observed in children or adults. 

Figure 7 Kaplan-Meier curves illustrating delay in time-to-infection for children with 

MSP-119 variant-specific antibodies at baseline. The four Kaplan-Meier curves show the 

percent of children remaining malaria infection free (measured by BS) on the Y axis over 

time (weeks of follow up, X axis) stratified by whether the children had MSP-119 variant-

specific antibodies (EKNG, QKNG, ETSR or QTSR) at baseline (week 0). Children with 

antibodies (responders) are represented with a dashed red line, and those with no antibodies 

are represented with a solid blue line. Children with antibodies against the MSP-119 variants 

had a delayed time-to-infection compared to those with no antibodies 

One of the goals was to determine if variant-specific antibodies to the C-terminal 19 kDa 

region of MSP-1 present at baseline were predictive of protection from subsequent haplotype-

specific infection. 176 participants were characterized as responders or non-responders for 

serologic responses to each antigen tested at baseline. Chi-squared tests for univariate 

analysis did not demonstrate any significant relationships between baseline variant-specific 

serology or functional antibodies and baseline or follow-up infection haplotypes. Logistic 

regressions controlling for age, baseline haplotype and parasite density also did not reveal 

any significant associations between baseline variant-specific serology or functional 

antibodies and infecting haplotypes (baseline or follow-up period infections). Variant-specific 

antibodies did not have a protective or detrimental effect on subsequent haplotype-specific 

infection (or lack of infection). In summary, children with variant-specific MSP-119 

antibodies demonstrated delayed time-to-infection, but follow-up infection haplotype bore no 

relationship to baseline MSP-119 variant-specific antibodies. 



Characteristics of participants who developed symptomatic uncomplicated 

malaria infections during the follow-up period 

During the 11 weeks of follow up after baseline Coartem administration, 18 individuals 

developed febrile malaria infections (axillary temperature >37.8 °C and parasitaemia) 

requiring retreatment with CoArtem®. Seventeen individuals were children (mean age 7.3 

years, range 2.1-11.5 years). Six of these 18 individuals had no infection at baseline. The 

predominant haplotypes at baseline of the other 12 individuals were EKNG (four), 

EKNG/QKNG (five), and EKNG/ETSR (three), which is a haplotype prevalence similar to 

that observed in the general population. At the time of symptomatic infection, five 

individuals were infected with EKNG/QKNG haplotypes, five with EKNG/QTSR, two with 

EKNG, and one individual for each of the remaining haplotypes (EKNG, QKNG/ETSR, 

QKNG/QTSR, EKNG/ETSR, ETSR, QTSR). This haplotype frequency again reflects the 

general population haplotype distribution during the follow-up period. All symptomatic 

individuals had asymptomatic infections prior to malarial disease (minimum one week prior, 

maximum seven weeks). Fifteen had detectable infections one to two weeks after CoArtem® 

retreatment (measured by PCR/LDR-FMA), but the parasite densities were lower compared 

to parasite densities associated with symptoms. Five individuals had a decrease in detectable 

parasite density for one to two weeks after medication, but then an increase in parasite 

density in the subsequent weeks (an example is shown in Figure 8A). Nine symptomatic 

individuals had new haplotypes detected one to two weeks prior to symptoms (an example is 

shown in Figure 8B). Nine study participants had all haplotypes present at some point during 

the follow-up period (an example is shown in Figure 8C). With respect to the presence or 

magnitude of antibody responses of these symptomatic individuals, no statistical difference 

was detected between this group and those who did not have disease or age-matched 

asymptomatic individuals. Of note, none of the symptomatic individuals had any MSP-119 

IIA detectable at baseline compared to 6% of the general population (p = 0.6; exact test). Over 

the entire follow-up period, 17 symptomatic individuals had more than one haplotype present 

in their infections, with an average of 3.04 different haplotypes during the follow-up period 

compared to 2.72 among age-matched, asymptomatic individuals (p = 0.185). Symptomatic 

individuals tended to have higher P. falciparum densities at baseline and during the follow-up 

period compared to age-matched, asymptomatic individuals, but this was not statistically 

significant (p = 0.08 and p = 0.67, respectively). 

Figure 8 Examples of detected infections for three symptomatic children over the study 

period demonstrating P. falciparum density and haplotypes detected. The red arrow 

denotes the week each child developed symptomatic clinical malaria and was retreated with 

Coartem®. The X axis denotes the week of the study and the Y axis denotes P. falciparum 

density by MFI. In Panel A, P. falciparum infection was detected several weeks prior to 

symptoms. With low parasitaemia, only a single haplotype (EKNG) was detected. It may be 

that amplifying the Q allele was below the threshold of detection with low parasitaemia. In 

Panel B, Coartem® administration was followed by a rapid decline of detectable 

parasitaemia, but increases in parasitaemia were seen in weeks 7–9. Panel C shows infections 

in weeks 3–6 with ENKG/QKNG haplotypes. In week 7, a new haplotype QTSR was 

detected prior to the development of clinical malaria 



Discussion 

Antigenic polymorphism is considered a significant confounder in the development of 

antibody-mediated protection against blood stage P. falciparum in the context of naturally 

acquired immunity and malaria vaccine development. The goal of this study was to determine 

whether variant-specific antibodies to MSP-119 were associated with haplotype-specific 

protection in a cohort of Kenyan adults and children who participated in a treatment time-to-

infection study. These data showed that i) baseline infecting MSP-119 haplotype had no effect 

on the subsequent infecting haplotypes; ii) variant-specific IgG antibodies measured 

serologically and functionally had no association with follow-up infecting haplotypes or 

density; iii) variant-specific antibodies correlated with delayed time-to-infection among 

children but not adults; and, iv) variant-specific antibodies were associated with protection in 

a haplotype-transcending manner. Considered together, these data found no evidence for 

haplotype-specific immunity to MSP-119 in this study of naturally infected individuals living 

in a malaria holoendemic region. 

EKNG and QKNG were the most prevalent MSP-119 haplotypes in this population and region 

of western Kenya in 2003 when this study was conducted. From other surveys, it has been 

found that this distribution of MSP-119 haplotype distribution pattern is stable (Yeo, 

unpublished). Takala et al. found comparable results with EKNG and QKNG being the most 

prevalent haplotypes in Mali from 1999 to 2001 [33]. Others have shown similar dominances 

of EKNG and QKNG in Kenya, Brazil, Vietnam, Thailand, Tanzania and Vanuatu [24,34-

36]. 

It was found that within a single individual, infecting haplotypes frequently changed from 

week to week. This could be due in part to sampling effect. A finger-prick blood sample does 

not accurately reflect total body haplotype prevalence or parasitaemia. Additionally, this 

study showed that with low parasitaemia haplotype detection may not be optimal (Figure 8). 

In several studies, parasite densities and parasite genotypes varied significantly within a 24-

hour time period and over days to weeks [37-40]. Furthermore, venous blood may reflect 

different densities than finger-prick blood as the latter would be expected to have a greater 

frequency of capillary-sequestered infected erythrocytes. Examining weekly infections may 

heighten the variability detected, but with repeated measures in 176 participants over a 12-

week study period, overall trends should persist. To this end, it was found that haplotype 

complexity was associated with P. falciparum density and possibly symptomatic infections. 

This contrasts with others’ finding that complexity of infection was associated with increased 

age and decreased frequency of symptomatic infection [33]. An important point in this regard 

is that children had higher parasite densities than adults, and this most likely led to better 

detection of multiple haplotypes. 

Analysis of serologic responses was performed using recombinant MSP-119 (four variants) 

and MSP-142 (three variants). Variability in protein folding and expression systems used to 

produce these products, e g, yeast and E. coli, and serology techniques (traditional ELISA vs 

Luminex® multiplex) could account for differences in determining antibody responders vs 

non-responders. Nevertheless, these data indicated that both approaches produced a similar 

overall result — no discernible variant-specific immune correlation, consistent with the 

notion that variant-specific antibodies cross react with heterologous variants. Using 

immunodepletion assays, Zakeri et al. found evidence of antibody cross-reactivity among 

several MSP-119 variants, consistent with these findings [36]. 



A significant limitation to the approach of detecting the infecting haplotype is the assumption 

made to assign two haplotypes to an infection that contained all four alleles. Although in 

most cases a predominant haplotype could be differentiated from a minor haplotype with the 

MFI of each detected allele, it is not certain that only two haplotypes were present [23]. For 

example, if an infection composed of all four alleles had higher MFIs for Q > E and 

KNG > TSR, the haplotypes would be assigned as QKNG and ETSR. However, it is possible 

that the individual was actually infected with QKNG, EKNG and ETSR. The only way to 

definitively determine this would be to have a larger blood volume and clone and sequence 

multiple PCR products, an approach which was not feasible for this study. Other methods 

such as pyrosequencing are advantageous in that direct sequencing of amplicons is possible. 

This study had limited power to detect associations between antibody responses and infecting 

haplotypes in the context of susceptibility to symptomatic malaria. The 18 individuals who 

developed clinical malaria during the follow-up period did not have a discernible variant-

specific antibody pattern. They did, however, lack MSP-119 IIA antibodies, which has 

previously been shown to increase with haplotype-specific (ETSR) infection [29]. 

Interestingly, 15 of these symptomatic individuals had P. falciparum detectable by PCR at 

least one week after treatment. Although this study was not designed to examine the efficacy 

of Coartem® treatment, previous observations demonstrate that parasites are cleared from the 

blood within 48 hours [41]. Although the possibility that detection of P. falciparum after 

treatment resulted from residual P. falciparum DNA cannot be excluded, it is most likely that 

detection resulted from the progression of pre-existing liver stage P. falciparum to the blood 

stage as Coartem® does not eliminate the former. Inadequate adherence to treatment regimen 

and/or lack of food intake with medication consumption could also result in incomplete 

parasite clearance [42,43], but is unlikely with this study as all six doses of Coartem were 

directly observed by project staff. All but one participant with symptomatic malaria during 

the follow-up period had infections containing three or more MSP-119 alleles. Increased COI 

may be associated with increased risk of symptomatic malaria, as has been observed 

previously [44,45]. Malaria transmission intensity and seasonality may also affect COI, but 

this study was not designed or powered to detect this association. 

Conclusion 

Healthy asymptomatic children and adults living in a holoendemic malaria region displayed 

no MSP-119 variant-specific antibody protection (measured serologically or functionally) 

against haplotype-specific infections regardless of age or parasite density (baseline or follow-

up infection). The infecting haplotype frequency reflected the population haplotype 

prevalence even after drug clearance. There was no discernible relationship between variant-

specific antibody responses and haplotype-specific infections. Variant-specific antibody 

responses and occurrence of malaria disease was not evaluated in this study but needs to be 

addressed in order to better inform vaccine development. 
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