2,236 research outputs found
Crystal chemistry of three-component white dwarfs and neutron star crusts: phase stability, phase stratification, and physical properties
A systematic search for multicomponent crystal structures is carried out for
five different ternary systems of nuclei in a polarizable background of
electrons, representative of accreted neutron star crusts and some white
dwarfs. Candidate structures are "bred" by a genetic algorithm, and optimized
at constant pressure under the assumption of linear response (Thomas-Fermi)
charge screening. Subsequent phase equilibria calculations reveal eight
distinct crystal structures in the bulk phase diagrams, five of which are
complicated multinary structures not before predicted in the context of compact
object astrophysics. Frequent instances of geometrically similar but
compositionally distinct phases give insight into structural preferences of
systems with pairwise Yukawa interactions, including and extending to the
regime of low density colloidal suspensions made in a laboratory. As an
application of these main results, we self-consistently couple the phase
stability problem to the equations for a self-gravitating, hydrostatically
stable white dwarf, with fixed overall composition. To our knowledge, this is
the first attempt to incorporate complex multinary phases into the equilibrium
phase layering diagram and mass-radius-composition dependence, both of which
are reported for He-C-O and C-O-Ne white dwarfs. Finite thickness interfacial
phases ("interphases") show up at the boundaries between single-component bcc
crystalline regions, some of which have lower lattice symmetry than cubic. A
second application -- quasi-static settling of heavy nuclei in white dwarfs --
builds on our equilibrium phase layering method. Tests of this nonequilibrium
method reveal extra phases which play the role of transient host phases for the
settling species.Comment: 11 pages, 4 figures, 1 table. Submitted to Ap
Migration and Final Location of Hot Super Earths in the Presence of Gas Giants
Based on the conventional sequential-accretion paradigm, we have proposed
that, during the migration of first-born gas giants outside the orbits of
planetary embryos, super Earth planets will form inside the 2:1 resonance
location by sweeping of mean motion resonances (Zhou et al. 2005). In this
paper, we study the subsequent evolution of a super Earth (m_1) under the
effects of tidal dissipation and perturbation from a first-born gas giant (m_2)
in an outside orbit. Secular perturbation and mean motion resonances
(especially 2:1 and 5:2 resonances) between m_1 and m_2 excite the eccentricity
of m_1, which causes the migration of m_1 and results in a hot super Earth. The
calculated final location of the hot super Earth is independent of the tidal
energy dissipation factor Q'. The study of migration history of a Hot Super
Earth is useful to reveal its Q' value and to predict its final location in the
presence of one or more hot gas giants. When this investigation is applied to
the GJ876 system, it correctly reproduces the observed location of GJ876d
around 0.02AU.Comment: 7 pages, 4 figure
Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles
We propose angle-resolved photoelectron spectroscopy of aerosol particles as
an alternative way to determine the electron mean free path of low energy
electrons in solid and liquid materials. The mean free path is obtained from
fits of simulated photoemission images to experimental ones over a broad range
of different aerosol particle sizes. The principal advantage of the aerosol
approach is twofold. Firstly, aerosol photoemission studies can be performed
for many different materials, including liquids. Secondly, the size-dependent
anisotropy of the photoelectrons can be exploited in addition to size-dependent
changes in their kinetic energy. These finite size effects depend in different
ways on the mean free path and thus provide more information on the mean free
path than corresponding liquid jet, thin film, or bulk data. The present
contribution is a proof of principle employing a simple model for the
photoemission of electrons and preliminary experimental data for potassium
chloride aerosol particles
Extrasolar planets and brown dwarfs around A-F type stars - VII. Theta Cygni radial velocity variations: planets or stellar phenomenon?
(abridged) In the frame of the search for extrasolar planets and brown dwarfs
around early-type main-sequence stars, we present the results obtained on the
early F-type star Theta Cygni. Elodie and Sophie at OHP were used to obtain the
spectra. Our dedicated radial-velocity measurement method was used to monitor
the star's radial velocities over five years. We also use complementary, high
angular resolution and high-contrast images taken with PUEO at CFHT. We show
that Theta Cygni radial velocities are quasi-periodically variable, with a
~150-day period. These variations are not due to the ~0.35-Msun stellar
companion that we detected in imaging at more than 46 AU from the star. The
absence of correlation between the bisector velocity span variations and the
radial velocity variations for this 7 km/s vsini star, as well as other
criteria indicate that the observed radial velocity variations are not due to
stellar spots. The observed amplitude of the bisector velocity span variations
also seems to rule out stellar pulsations. However, we observe a peak in the
bisector velocity span periodogram at the same period as the one found in the
radial velocity periodogram, which indicates a probable link between these
radial velocity variations and the low amplitude lineshape variations which are
of stellar origin. Long-period variations are not expected from this type of
star to our knowledge. If a stellar origin (hence of new type) was to be
confirmed for these long-period radial velocity variations, this would have
several consequences on the search for planets around main-sequence stars, both
in terms of observational strategy and data analysis. An alternative
explanation for these variable radial velocities is the presence of at least
one planet of a few Jupiter masses orbiting at less than 1 AU. (abridged)Comment: 9 pages, accepted in A
In Vitro Multitissue Interface Model Supports Rapid Vasculogenesis and Mechanistic Study of Vascularization across Tissue Compartments
A significant challenge facing tissue engineers is the design and development of complex multitissue systems, including vascularized tissue-tissue interfaces. While conventional in vitro models focus on either vasculogenesis (de novo formation of blood vessels) or angiogenesis (vessels sprouting from existing vessels or endothelial monolayers), successful therapeutic vascularization strategies will likely rely on coordinated integration of both processes. To address this challenge, we developed a novel in vitro multitissue interface model in which human endothelial colony forming cell (ECFC)-encapsulated tissue spheres are embedded within a surrounding tissue microenvironment. This highly reproducible approach exploits biphilic surfaces (nanostructured surfaces with distinct superhydrophobic and hydrophilic regions) to (i) support tissue compartments with user-specified matrix composition and physical properties as well as cell type and density and (ii) introduce boundary conditions that prevent the cell-mediated tissue contraction routinely observed with conventional three-dimensional monodispersion cultures. This multitissue interface model was applied to test the hypothesis that independent control of cell-extracellular matrix (ECM) and cell-cell interactions would affect vascularization within the tissue sphere as well as across the tissue-tissue interface. We found that high-cell-density tissue spheres containing 5 × 10(6) ECFCs/mL exhibit rapid and robust vasculogenesis, forming highly interconnected, stable (as indicated by type IV collagen deposition) vessel networks within only 3 days. Addition of adipose-derived stromal cells (ASCs) in the surrounding tissue further enhanced vasculogenesis within the sphere as well as angiogenic vessel elongation across the tissue-tissue boundary, with both effects being dependent on the ASC density. Overall, results show that the ECFC density and ECFC-ASC crosstalk, in terms of paracrine and mechanophysical signaling, are critical determinants of vascularization within a given tissue compartment and across tissue interfaces. This new in vitro multitissue interface model and the associated mechanistic insights it yields provide guiding principles for the design and optimization of multitissue vascularization strategies for research and clinical applications
Discovery and characterization of WASP-6b, an inflated sub-Jupiter mass planet transiting a solar-type star
We report the discovery of WASP-6b, an inflated sub-Jupiter mass planet transiting every 3.3610060^{\rm + 0.0000022 }_ days a mildly metal-poor solar-type star of magnitude V = 11.9. A combined analysis of the WASP photometry, high-precision followup transit photometry and radial velocities yield a planetary mass M_{\rm p} = 0.503^_ and radius R_{\rm p} = 1.224^_ , resulting in a density . The mass and radius for the host star are M_\ast = 0.88^_ and R_\ast = 0.870^_ . The non-zero orbital eccentricity e = 0.054^{\rm +0.018}_ that we measure suggests that the planet underwent a massive tidal heating ~1 Gyr ago that could have contributed to its inflated radius. High-precision radial velocities obtained during a transit allow us to measure a sky-projected angle between the stellar spin and orbital axis \beta = 11^_ deg. In addition to similar published measurements, this result favors a dominant migration mechanism based on tidal interactions with a protoplanetary disk
The extraordinary evolutionary history of the reticuloendotheliosis viruses
The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events
Integrating isotopes and documentary evidence : dietary patterns in a late medieval and early modern mining community, Sweden
We would like to thank the Archaeological Research Laboratory, Stockholm University, Sweden and the Tandem Laboratory (Ångström Laboratory), Uppsala University, Sweden, for undertaking the analyses of stable nitrogen and carbon isotopes in both human and animal collagen samples. Also, thanks to Elin Ahlin Sundman for providing the δ13C and δ15N values for animal references from Västerås. This research (Bäckström’s PhD employment at Lund University, Sweden) was supported by the Berit Wallenberg Foundation (BWS 2010.0176) and Jakob and Johan Söderberg’s foundation. The ‘Sala project’ (excavations and analyses) has been funded by Riksens Clenodium, Jernkontoret, Birgit and Gad Rausing’s Foundation, SAU’s Research Foundation, the Royal Physiographic Society of Lund, Berit Wallenbergs Foundation, Åke Wibergs Foundation, Lars Hiertas Memory, Helge Ax:son Johnson’s Foundation and The Royal Swedish Academy of Sciences.Peer reviewedPublisher PD
Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline
- …
