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Abstract

A significant challenge facing tissue engineers is the design and development of complex 

multitissue systems, including vascularized tissue–tissue interfaces. While conventional in vitro 

models focus on either vasculogenesis (de novo formation of blood vessels) or angiogenesis 

(vessels sprouting from existing vessels or endothelial monolayers), successful therapeutic 

vascularization strategies will likely rely on coordinated integration of both processes. To address 

this challenge, we developed a novel in vitro multitissue interface model in which human 

endothelial colony forming cell (ECFC)-encapsulated tissue spheres are embedded within a 

surrounding tissue microenvironment. This highly reproducible approach exploits biphilic surfaces 
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(nanostructured surfaces with distinct superhydrophobic and hydrophilic regions) to (i) support 

tissue compartments with user-specified matrix composition and physical properties as well as cell 

type and density and (ii) introduce boundary conditions that prevent the cell-mediated tissue 

contraction routinely observed with conventional three-dimensional monodispersion cultures. This 

multitissue interface model was applied to test the hypothesis that independent control of cell–

extracellular matrix (ECM) and cell–cell interactions would affect vascularization within the tissue 

sphere as well as across the tissue–tissue interface. We found that high-cell-density tissue spheres 

containing 5 × 106 ECFCs/mL exhibit rapid and robust vasculogenesis, forming highly 

interconnected, stable (as indicated by type IV collagen deposition) vessel networks within only 3 

days. Addition of adipose-derived stromal cells (ASCs) in the surrounding tissue further enhanced 

vasculogenesis within the sphere as well as angiogenic vessel elongation across the tissue–tissue 

boundary, with both effects being dependent on the ASC density. Overall, results show that the 

ECFC density and ECFC–ASC crosstalk, in terms of paracrine and mechanophysical signaling, 

are critical determinants of vascularization within a given tissue compartment and across tissue 

interfaces. This new in vitro multitissue interface model and the associated mechanistic insights it 

yields provide guiding principles for the design and optimization of multitissue vascularization 

strategies for research and clinical applications.

Graphical abstract

Keywords

collagen oligomers; vascularization; multitissue interface; adipose-derived stromal cells (ASCs); 
endothelial colony forming cells (ECFCs); mechanobiology; tissue engineering

INTRODUCTION

A significant challenge facing tissue engineers is the design and functional assembly of 

complex multitissue systems, including vascularized tissue–tissue interfaces.1,2 Such 

systems are typically composed of multiple cell types arranged and organized with 

boundaries or within gradients of extracellular matrix (ECM) components to perform 

specific functional roles.3 Moreover, incorporating functional vasculature within such 

multitissue systems is essential to their scalability, long-term tissue survivability, and 

effective integration with host tissues upon implantation.4 It is now recognized that a 

complex interplay of biochemical and biophysical cues is involved in tissue morphogenesis,5 

and new design approaches to support the construction and optimization of vascularized 

tissue–tissue interfaces are needed.
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To create complex, vascularized tissue-engineered constructs, the guiding mechanisms of 

blood vessel formation, maturation, and stabilization must first be understood. 

Neovascularization, as occurs in vivo during embryonic development and throughout adult 

life, involves two primary processes, namely, vasculogenesis and angiogenesis.5,6 

Vasculogenesis represents the de novo self-assembly of vessel networks by endothelial cell 

precursors, making it ideally suited for tissue engineering strategies. Angiogenesis involves 

the sprouting and elongation of new vessels from pre-existing vasculature, a process 

necessary for facilitating functional anastomosis, or hook-up, between the vascularized 

tissue construct and the host vasculature.

A number of critical steps and mechanisms underlying vasculogenesis and angiogenesis 

have been defined using various three-dimensional (3D) in vitro vascularization models. For 

example, angiogenic capillary sprouting is observed when endothelial cells (ECs) are 

cultured as a monolayer atop the surface of a 3D ECM substrate7 or sandwiched between 

substrate layers.8,9 Capillary sprouting also occurs from aortic rings,10 microvessels,11 EC-

coated microbeads,12 or EC aggregates/spheroids13,14 embedded within substrates. 

Collectively, angiogenesis involves invasion of physiologically relevant substrates, such as 

interstitial fibrillar type I collagen or fibrin, by activated ECs of existing vessels or 

monolayers; this requires limited matrix proteolysis, proliferation, migration, and lumen 

formation and stabilization.15 In contrast, in vitro models of vasculogenesis involve 

monodispersion of ECs or their progenitors, where individual cells are homogeneously 

distributed within a 3D substrate (Figure 1A,B).16–18 Here, programmed events associated 

with vasculogenesis include vacuole formation, vacuole coalescence to form multicellular 

lumens, and vessel maturation and stabilization.19 These 3D in vitro models, together with 

corroborating in vivo evidence, show that vessel morphogenesis is modulated by a complex 

series of events involving cell–cell, cell–ECM, growth factor, and morphogen signaling.20

While these 3D in vitro models have provided mechanistic insight into vascularization 

processes, they are limited in their ability to define critical design parameters necessary for 

vascularization of tissue-engineered constructs and, more importantly, vascularization across 

tissue–tissue interfaces. For example, tissue construct contraction, which results from cell–

matrix traction forces, is often associated with high cell densities and/or low-mechanical-

integrity substrates.21,22 Such contraction events affect vessel morphogenesis outcomes by 

altering the mechanical boundary conditions of the tissue construct,21,23 compromising the 

overall vessel network morphology, tissue histology, and scalability. Improved definition and 

standardization of critical design parameters, including cell type, cell seeding density, 

medium composition, substrate composition, substrate physical properties, and mechanical 

boundary conditions, are needed to ensure robust and reproducible functional performance 

of vascularized tissue-engineered constructs for both research and clinical applications.16,24

The present study features a design approach that utilizes, for the first time, biphilic 

wettability surfaces having hydrophilic regions patterned onto a superhydrophobic 

background to direct the formation of spherical cell–collagen tissues. Such spherical cell–

collagen tissues can be readily integrated into a second tissue for creation of a multitissue 

interface in vitro (Figure 1C,D). This approach enables independent specification of each 

tissue’s interstitial collagen-fibril ECM and resident cell populations, including type and 

Buno et al. Page 3

ACS Appl Mater Interfaces. Author manuscript; available in PMC 2016 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



density. This new culture model was applied to test a hypothesis that independent control of 

cell–ECM and cell–cell interactions would affect vessel morphogenesis within a component 

tissue as well as across the tissue–tissue interface. An essential element of the design 

approach is the application of type I collagen oligomers, which represent a soluble collagen 

formulation that self-assembles to form collagen-fibril matrices with higher-order interfibril 

associations. As such, the supramolecular assembly of oligomers supports the creation of 

collagen–fibril matrices with a broad range of structural and mechanical properties 

(specified by fibril density and matrix stiffness) beyond those that can be achieved with 

conventional collagen monomers, atelocollagen, and telocollagen.25–28 Furthermore, 

embedding oligomer-based tissue spheres within an oligomer-based surrounding tissue 

facilitates the creation of a tissue–tissue interface that maintains stability even in the 

presence of high cell densities, which may be necessary to replicate certain physiological 

conditions.

Previously, oligomer collagen-fibril matrices have been shown to provide the necessary 

mechanobiological cues to induce and guide monodispersions of endothelial colony forming 

cells (ECFCs) to form lumenized vessel networks stabilized by a basement membrane both 

in vitro and in vivo.26,29 In the present work, the multitissue interface method is applied to 

culture ECFCs at unprecedented densities, thereby accelerating vessel morphogenesis to 

within 3 days. This culture model also demonstrates that the ECFC density and crosstalk 

between ECFCs and adipose-derived stromal cells (ASCs) across a tissue–tissue interface 

play critical roles in not only determination of the vessel network morphology but also 

stabilization of vessels formed within and across tissue compartments. Controlling and 

optimizing relevant design features associated with multitissue interfaces, specifically the 

structural and mechanical features of the collagen-fibril matrix as well as the cell 

composition and density, may assist the development of vascularized tissue interfaces for a 

diverse range of tissue engineering applications.

METHODS

Fabrication of Biphilic Surfaces with Spatially Nonuniform Wettability

Superhydrophobic surfaces were fabricated on Si substrates using a metal-assisted chemical 

etching method.30 The surface was first etched with 5% HF aqueous solution for 3 min to 

produce a hydrogen-terminated substrate and then immersed into an aqueous solution 

containing 4.8 M HF and 5 mM AgNO3 for 1 min to create a uniform layer of Ag 

nanoparticles. The surface was rinsed with water to remove surplus Ag+ and then immersed 

in an etchant composed of 4.8 M HF and 0.4 M H2O2 for 30 min. After etching, the Si 

substrate was washed repeatedly with water and immersed in dilute HNO3 (1:2 HNO3/

deionized water) for 30 min to dissolve the Ag catalyst. As a result of this process, Si 

nanowires were grown uniformly across the substrate. To render the surface 

superhydrophobic, the sample was silanized through immersion in a 1 mM n-hexane 

solution of 1H,1H,2H,2H-perfluorooctyltrichlorosilane for 1 h followed by heat treatment at 

~150 °C on a hot plate for 1 h. The static apparent contact angle and roll-off angle of the as-

fabricated surface were measured to be ~165° and <1°, respectively, using a ramé-hart 

(Succasunna, NJ) model 590 goniometer; while a spherical droplet was formed upon 
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deposition on the surface, these highly nonwetting characteristics prevented reproducible 

attachment and positioning of droplets on the surface.

In order to facilitate the formation and adhesion of spherical collagen and cell–collagen 

droplets on the surface, laser-assisted surface treatment was used to selectively create 

hydrophilic regions on the superhydrophobic background. An array of dots (0.9 mm 

diameter dots with a center-to-center spacing of 4.5 mm) was generated on the surface using 

a commercial CO2 laser-engraving system (PLS6MW, Universal Laser Systems, Inc., 

Scottsdale, AZ; 75 W, laser wavelength = 10.6 μm). The system was used to inscribe the 

desired pattern on the substrate by raster-scanning the laser beam across the surface at a 

speed of 0.2 m/s with 400 pulses per inch. The laser irradiation rapidly increases the local 

temperature and removes the superhydrophobic surface-coating material, generating 

hydrophilic dots to which droplets can attach.

The biphilic surfaces were exposed to two different sterilization techniques, including an 

autoclave (121 °C, 15 atm, 15 min) and 80% ethanol diluted in Milli-Q water (15 min). 

Surfaces that received the 80% ethanol treatment were rinsed thrice in sterile phosphate-

buffered saline (PBS) and then air-dried. Contact angle measurements of water droplets (5 

μL) were taken before and after the sterilization treatments. Surfaces were tested in triplicate 

(n = 3), and the results were compared using a paired t test.

Preparation of Type I Collagen Oligomers

Type I collagen oligomers were acid-solubilized from the dermis of market-weight pigs and 

lyophilized for storage as described previously.26 The oligomer formulation was 

standardized on the basis of molecular composition as well as polymerization capacity 

according to ASTM International standard F3089-14.31 Here the polymerization capacity is 

defined by the matrix shear storage modulus, G′ (in Pa), as a function of oligomer 

concentration in the polymerization reaction. Each collagen solution was diluted with 0.01 N 

HCl to achieve the desired concentration and neutralized with 10× PBS and 0.1 N NaOH to 

achieve pH 7.4.32 Neutralized solutions were kept on ice prior to induction of 

polymerization by warming to 37 °C.

Validation of Collagen Sphere Geometry and Reproducibility

Type I collagen oligomers were diluted in 0.01 N HCl and neutralized to stiffness values of 

0, 200, and 1000 Pa, which correspond to final oligomer concentrations of 0.0, 1.4, and 2.9 

mg/mL, respectively. Air-displacement (Pipetman, Gilson Inc., Middleton, WI) and positive-

displacement (Microman, Gilson Inc.) pipettes were used to dispense oligomer at specified 

volumes of 5, 10, and 15 μL onto the hydrophilic spots of the biphilic surface, resulting in 

sphere formation (Figure 2). For each experimental group, triplicate spheres were formed (n 
= 3). Sphere volumes were measured from goniometer images, and the sphere geometry was 

characterized by the droplet height-to-width aspect ratio (ImageJ, NIH, Bethesda, MD):

(1)
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where Hsphere and Wsphere represent the height and width of the oligomer sphere, 

respectively. An ideal sphere would have an aspect ratio of 1; the amount of reduction below 

1 indicates the degree of sphere distortion.

Cell Culture

Human ECFCs were isolated from umbilical cord blood and cultured as described 

previously.33 Low-passage human ASCs were grown according to the manufacturer’s 

instructions (Zen-Bio, Research Triangle Park, NC). Both ECFCs and ASCs were 

propagated in complete endothelial cell growth medium (EGM-2, Lonza, Walkersville, MD) 

supplemented with 10% fetal bovine serum (HyClone, ThermoFisher Scientific, Waltham, 

MA). Cells were grown and maintained in a humidified environment of 5% CO2 in air at 

37 °C. ECFCs and ASCs were used in experiments at passages between 8 and 13.

Preparation of 3D Monodispersion and Multitissue Interface Tissue Constructs

For the monodispersion format (Figure 1A,B), ECFCs were suspended in neutralized 

oligomer at a density of 0.5 × 106, 2 × 106, or 5 × 106 cells/mL. The oligomer–cell 

suspension was aliquoted into a 48-well plate (250 μL/well) and subsequently polymerized 

at 37 °C for 15 min.

For the multitissue interface format (Figure 1C,D), 5 μL aliquots of oligomer–cell 

suspension were pipetted onto the biphilic surfaces to create spheres, which were 

polymerized for 10 min at 37 °C. Next, the oligomer–cell suspension for the surrounding 

tissue was pipetted into 48-well tissue culture plates at 250 μL/well. A single polymerized 

oligomer–cell sphere was immediately placed in the center of each well, and the surrounding 

tissue was polymerized for 15 min at 37 °C. The volumes of the sphere and surrounding 

tissue microenvironment were selected such that the sphere was not in contact with the 

upper (liquid–air interface) and lower (cultureware) surfaces, ensuring uniform and highly 

reproducible tissue–tissue interactions and mechanophysical properties across the sphere 

surface area. All of the tissue constructs were cultured in complete EGM-2 medium in an 

incubator (5% CO2, 37 °C) with daily medium replacements. All of the experimental groups 

were tested in triplicate (n = 3).

Assessment of Sphere and Overall Tissue Contraction

To monitor qualitative changes in the embedded sphere and tissue construct volume as a 

function of cell seeding density and time, macroscopic top-view images of the 48-well plate 

were taken at 0, 24, 48, and 72 h. The sphere boundary was identified in each image, and the 

sphere cross-sectional area was calculated using ImageJ. After 3 days of culture, tissues 

were rinsed thrice in PBS, fixed in 3% paraformaldehyde, and rinsed thrice again in 1× PBS. 

A volume displacement method was used to quantitatively measure the final tissue volume. 

Triplicate wells containing tissue constructs, along with three empty wells, were carefully 

filled with PBS. Next, the supernatant (PBS) from each sample was weighed using an 

analytical balance (BP 210 D, Sartorius, Elk Grove, IL). The known mass of the supernatant 

and the density of water at 21.5 °C (0.9979 g/mL) were used to calculate the supernatant 

volume, Vsupernatant, which represents the volume in the well not occupied by tissue. The 
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volume calculated for the empty wells represents the total volume of each well, Vwell. 

Subtracting Vsupernatant from Vwell gives a measure of tissue volume:

(2)

From initial tissue volumes, Vi, of 250 and 255 μL for the matrix-only and multitissue 

interface methods, respectively, the final tissue volume percentages were calculated:

(3)

Immunostaining of 3D Tissue Constructs

Tissue constructs were fixed in 3% paraformaldehyde after 3 days of culture, permeabilized 

with 1% Triton X-100, blocked with 1% bovine serum albumin, and stained with rabbit anti-

human collagen type IV (ab6581, Abcam, Cambridge, MA) overnight at 4 °C. The 

constructs then were rinsed with PBS and incubated with goat anti-rabbit–Alexa Fluor 633 

conjugate (A-21070, Life Technologies, Carlsbad, CA) overnight at 4 °C. After rinsing, 

constructs were counterstained with fluorescein isothiocyanate (FITC)-conjugated Ulex 
europaeus agglutinin 1 (UEA-1) lectin (L9006, Sigma-Aldrich, St. Louis, MO) and 

phalloidin (A22283, Molecular Probes, Eugene, OR) to stain the endothelial cell membrane 

and actin cytoskeleton, respectively.

3D Vessel Morphology Analysis

For 3D qualitative analysis, tissue constructs were imaged using an Olympus FluoView 

FV-1000 confocal system adapted to an inverted microscope (IX81, Olympus Corporation, 

Tokyo, Japan). Image stacks were collected from one to three locations within each of the 

three independent tissue constructs per experimental group. All of the image files were 

imported into MATLAB (The MathWorks, Natick, MA) to create projections of each stack. 

Confocal reflection microscopy was used to visualize the collagen-fibril microstructure.34

For quantitative vessel morphometric analysis, a confocal image stack (635.9 μm × 635.9 

μm × 100 μm) was collected from the tissue sphere within each of the three independent 

tissue constructs per experimental group (n = 3). Image files were imported into Imaris 

(Bitplane, Concord, MA) for 3D reconstruction and analysis. Briefly, an isosurface was 

created and split into individual surface objects that were characterized by a set of geometric 

parameters including sphericity, ellipticity (prolate or oblate), ellipsoid axis length, and 

volume. Objects were then classified as a quiescent cell, short vessel, small vessel network 

(SVN), extensive vessel network (EVN), or other using the decision tree shown in Figure S1 

in the Supporting Information. Objects with volumes less than 2000 μm3 were regarded as 

debris and not considered in the morphological profile analysis. The volumes of objects 

classified as a short vessel, SVN, and EVN were summed to calculate the total vessel 

volume, which was used to calculate the vessel volume percentage of the entire imaged 

volume.
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Quantification of Alignment of Collagen Fibrils and Cells

Confocal reflection and fluorescence image volumes were used to determine the collagen 

fibril and cell orientations, respectively. Image volumes (1309 μm × 436 μm × 30 μm) were 

captured in such a way that their length was oriented parallel to the normal line of the 

sphere. Each image volume was then segmented into thirds lengthwise to determine the 

orientation as a function of distance from the tissue–tissue interface. The angular direction 

was calculated using an ImageJ fast Fourier transform algorithm. The absolute values of all 

orientation angles were then divided by 90 to create a normalized alignment parameter with 

values of 0 and 1 representing orientations tangent (parallel) and normal (perpendicular) to 

the sphere surface. Two image volumes within each of three replicate constructs were 

analyzed.

Statistical Analysis

Statistical analyses were performed using statistical analysis software (SAS, Cary, NC). 

Unless otherwise stated, comparisons were made using one-way analysis of variance 

(ANOVA) with a Tukey posthoc test. A critical global p value of 0.05 was used.

RESULTS AND DISCUSSION

Biphilic Surfaces Reproducibly Form Collagen and Tissue Spheres

Superhydrophobic surfaces are characterized by a large water droplet contact angle (>150°; 

see Figure 2A) and low contact angle hysteresis (<10°), resulting in spherical droplets that 

roll off the surface even when it is tilted at a very slight angle. In the present work, biphilic 

surfaces consisting of hydrophilic regions patterned onto a superhydrophobic surface 

supported the highly reproducible formation of variously sized tissue spheres composed of 

polymerized collagen-fibril matrices in the presence and absence of cells (Figure 2B,C). 

Patterning the superhydrophobic surface with small hydrophilic spots was necessary to 

facilitate solution deposition and prevent free rolling of spheres. Spots with a diameter of 0.9 

mm preserved a high contact angle of greater than 150°, creating highly spherical tissue 

construct geometries.

A full factorial experimental design was performed to quantify the effects of oligomer 

matrix stiffness (as specified by the oligomer concentration) and volume (5, 10, or 15 μL) on 

the tissue sphere geometry and reproducibility. For a given target tissue sphere volume, the 

measured sphere volume delivered by an air-displacement pipet was inversely related to the 

collagen-fibril matrix stiffness (oligomer concentration) (Figure 3A). The measured tissue 

sphere volumes for 1000 Pa oligomer, representing the highest-viscosity solution, were 

roughly 73%, 78%, and 84% of the specific target volumes of 5, 10, and 15 μL, respectively. 

The use of a positive-displacement pipet dramatically improved the volume delivery 

accuracy and precision. In fact, when a positive-displacement pipet was used to create 1000 

Pa spheres, the accuracy was at least 87% and the precision was 1.9% or better for all 

volumes tested. Unlike air-displacement pipettes, which use a compressible dead-air volume 

to move the fluid, positive-displacement pipettes use an incompressible piston to move the 

fluid. This direct contact enhances the accuracy and precision, especially for viscous liquids. 

Finally, although gravity effects caused an inverse relationship between the sphere aspect 
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ratio and the measured volume, the sphere aspect ratios were greater than 0.8 for all volumes 

and matrix stiffness values tested (Figure 3B). Taken together, the results demonstrate that 

the oligomer tissue sphere volume and geometry can be reproduced with high precision and 

accuracy.

Multitissue Interface Format Prevents Cell-Mediated Tissue Contraction of High-Cell-
Density Tissues

A number of researchers, including our group, have shown that conventional 

monodispersion cultures of ECs or their progenitors within type I collagen or fibrin matrices 

undergo vasculogenesis.21,29,35–37 The extent of vessel network formation, as well as their 

maturation and stability, depends on specific microenvironment conditions, including matrix 

composition and physical properties,21,29,25,38,39 medium composition,40 type of EC,21 and 

addition of accessory cells.19,39 The extent of vessel formation was also shown to be 

positively correlated with the EC seeding density;41 however, seeding densities of 1 × 106 

cells/mL or lower are routinely used to avoid tissue construct contraction. Tissue contraction 

depends on the combination of cell density and type,21 matrix type and associated physical 

properties,42–44 and physical boundary conditions.22,43 Culture surface coating with 

glutaraldehyde, polyethylenimine, or poly-L-lysine may be applied to improve construct 

adherence and minimize contraction.45,46

Here we evaluated both the conventional monodispersion format and the proposed 

multitissue interface culture format on their ability to maintain mechanical boundary 

conditions and avoid tissue construct contraction (Figure 4). In all of the experiments, the 

oligomer concentration was kept constant at 1.4 mg/mL (G′ = 200 Pa) since conventional 

monodispersion culture of ECFCs within this matrix formulation has been shown to induce 

robust vessel formation.35 The volumes of the sphere (5 μL; ~2 mm in height) and 

surrounding tissue microenvironment (250 μL; ~2.6 mm in height) were selected such that 

the tissue sphere was completely embedded within the surrounding tissue microenvironment, 

ensuring uniform and highly reproducible tissue–tissue interactions and mechanophysical 

properties across the sphere surface area. As expected, for monodispersion cultures (Figure 

4, top), the tissue construct contraction increased significantly (p < 0.05) with increasing cell 

density, except for constructs prepared at the lowest ECFC density (0.5 × 106 cells/mL), 

where contraction was not detected. Tissue constructs prepared with 2 × 106 and 5 × 106 

cells/mL displayed density-dependent contraction as early as 24 h, with final tissue volume 

percentages of 38.5 ± 12.6% and 10.3 ± 12.1%, respectively, after 3 days of culture. In 

contrast, all of the constructs prepared using the multitissue interface method maintained 

their starting tissue volumes regardless of ECFC seeding density (Figure 4, bottom). 

Additionally, there was no statistically significant change in the cross-sectional area of the 

embedded sphere for any of the experimental groups over the 3 day time period (Table S1). 

Notably, tissue sphere embedment within a surrounding tissue matrix represents a variation 

of bilayered collagen substrates in which two collagen matrices are polymerized 

consecutively, one on top of the other.47 Both approaches result in fusion of two different 

tissue microenvironments to create a tissue interface. Unlike the conventional 

monodispersion format, the multitissue interface approach incorporates a tissue–tissue 
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interface that prevents cell-mediated tissue contraction, representing a more controlled and 

physiologically relevant microenvironment.

As presented here, our in vitro multitissue interface model involves a “tissue spheroid” 

formed with a specified cell population as well as a specified ECM component. Such an 

approach should be distinguished from the more well established “cell spheroids”, which are 

formed exclusively from cells. Specifically, endothelial cell spheroids, formed in the absence 

of any specified matrix component, are routinely embedded within a surrounding collagen 

matrix, creating an in vitro model of angiogenesis.48 Spheroid formation is induced by 

culturing endothelial cells overnight within nonadherent cultureware.14,49 Compared with 

the multitissue interface model, cell–cell interactions dominate within endothelial cell 

spheroids, and vasculogenesis is not observed. Instead, vessels sprout and extend from the 

spheroid into the surrounding matrix, mimicking angiogenesis.48

Multitissue Interface Cultures Enhance the Rate and Extent of Vessel Morphogenesis and 
Stabilization

In the present study, we compared the two culture formats and observed differences at the 

tissue and cellular levels in terms of vessel morphogenesis. Although both formats showed 

that the extent of vessel formation was positively correlated with ECFC density, dramatic 

differences in vessel network induction, morphology, and stabilization were observed; this is 

largely attributed to differences in the mechanical boundary conditions (Figure 5). 

Consistent with our previous reports,35 ECFCs cultured for 3 days at low density (0.5 × 106 

cells/mL) in a monodispersion format were round or vacuolated with regional collagen type 

IV deposition associated with ECFC membranes (Figure 5A). As the ECFC density 

increased, vacuolated cells fused, forming increased numbers of small vessel networks with 

type IV collagen deposition apparent along the length of the vessel. Constructs containing 5 

× 106 ECFCs/mL appeared to have the highest vessel density because of contraction of the 

tissue volume; however, the ECFCs remained round or formed only short vessels with 

limited network interconnections (Figure 5A). For monodispersion cultures, the cell–matrix 

tension balance is quickly lost upon tissue contraction, which occurs when collective cell 

traction forces overcome tissue–plastic adhesive forces. As such, the matrix–integrin–

cytoskeleton signaling experienced by the vessel-forming endothelial cells is altered, 

compromising vessel elongation and anastomosis. Clearly, these results confirm that 

sufficient cell–matrix traction forces are necessary for induction of vasculogenesis as well as 

vessel morphogenesis.50 In addition, the number of vessel-forming networks, which depends 

on the ECFC density, is an important driver for network connection or anastomosis.

Results observed with the multitissue interface model further support the concept that both 

the number of vessel-forming networks and cell–matrix traction forces are critical to the 

overall vessel morphogenesis process. In this format, tissue sphere ECFCs showed rapid, 

extensive vessel network formation (Figure 5B) that increased with ECFC seeding density. 

In fact, extensive multicellular vessel networks stabilized by type IV collagen were apparent 

within only 3 days. This accelerated rate of vessel formation is at least 2 times as fast as 

those in previous reports by our group35 as well as other culture models involving EC–
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pericyte cocultures.19 Thus, our model likely better recapitulates in vivo developmental 

vasculogenesis, which is said to occur in the span of between several hours to a few days.51

Upon comparison of the monodispersion and multitissue interface formats at the lowest 

ECFC density (0.5 × 106 ECFCs/mL), the observed vessel numbers and morphologies were 

similar, largely since ECs in the two formats experience similar cell–matrix tension balance. 

In contrast, high-density multitissue interface cultures prepared with 2 × 106 or 5 × 106 

ECFCs/mL formed vessel networks that were longer and more interconnected than those in 

the corresponding monodispersion cultures. We postulate that this improved outcome may 

be attributed to the fact that the multitissue interface model supports maintenance of the 

tissue geometry and the associated cell–matrix tensional forces. As shown in Figure 5B, 

multitissue interface cultures prepared with 5 × 106 ECFCs/mL formed extensive, highly 

interconnected, and lumenized vessel networks (Figure S2) stabilized by a basement 

membrane, resembling capillary networks formed in vivo. It has been postulated that 

pericytes or accessory cells are required for stabilization of formed vessels by basement 

membrane deposition.19 However, the results obtained in the present study confirm our 

previous findings that oligomer collagen matrices are sufficient to induce type IV collagen 

deposition by ECFCs in the absence of accessory cells,35 again emulating steps of 

vasculogenesis reported in the quail.52

Customizable Tissue–Tissue Interface: Addition of ASCs to the Surrounding Tissue 
Dramatically Improves ECFC Vessel Formation and Stabilization within the Tissue Sphere

Recently, much attention has been focused on determining how accessory cells, such as 

pericytes, affect vessel morphogenesis and stabilization for both in vitro and in vivo tissue 

engineering strategies.38,53–56 It is generally accepted that accessory cells enhance vessel 

morphogenesis through not only paracrine signaling but also direct cell–cell contact.57,58 

Accessory cells also remodel and reorganize the substrate, which in turn modulates 

mechanophysical EC–matrix interactions.59 To study EC–accessory cell interactions, 

researchers routinely employ cocultures in which ECs and accessory cells (i.e., pericytes, 

fibroblasts, ASCs, and bone-marrow-derived mesenchymal stromal cells) are concurrently 

and homogeneously monodispersed in a substrate.19,39,59 In the present study, we employed 

the multitissue interface model to determine the extent of crosstalk between the two distinct 

tissue compartments. Specifically, we defined how ECFCs and ASCs, alone or in 

combination with the surrounding tissue microenvironment, affect ECFC vessel formation 

within the embedded tissue sphere. For these experiments, all of the tissue constructs were 

prepared with embedded tissue spheres containing 5 × 106 ECFCs/mL. ASCs were chosen 

as the accessory cells because of their suitability for autologous cell therapies.

Qualitative evaluation of constructs cultured for 3 days indicated that ASCs, ECFCs, and 

ASCs + ECFCs in the surrounding tissue enhanced ECFC vessel formation within the tissue 

sphere relative to the control containing no accessory cells (Figure 6A–D). Although the 

quantified vessel volume percentages for the control (6.4 ± 2.1%) and ECFC-only (6.8 

± 3.5%) groups were statistically similar (p > 0.05), the ECFC-only group contained fewer 

quiescent cells and vessels that appeared slightly more elongated. This increase in the 

percentages of short vessels and small vessel networks and decrease in the percentage of 
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quiescent cells were captured by the new algorithm (Figure S1) designed to quantify 

identified categories of vessel morphology (Figure 6A,B). This quantification strategy 

provided a vessel morphogenesis “fingerprint” for each experimental group studied.

A dramatic difference was observed in both the volume percentage and morphology of 

vessels formed when ASCs were added to the surrounding tissue. Both the ASC and ASC + 

ECFC groups induced the formation of highly interconnected and persistent vessel networks 

(Figure 6C,D). The vessel volume percentages for the ASC and ASC + ECFC groups were 

16.2 ± 4.7% and 19.0 ± 4.5%, respectively, which were more than 2-fold greater than those 

without ASCs. In terms of vessel morphology, the ASC and ASC + ECFC groups were 

composed of 87% and 85% extensive vessel networks (EVN), respectively, compared with 

roughly 50% EVN for groups without ASCs. Unlike conventional monodispersion cultures, 

where ECs and accessory cells are cocultured together within a substrate, the multitissue 

interface model allows ECs and accessory cells to be cocultured in separate but interfacing 

tissue environments. This approach effectively minimizes the influence of initial direct cell–

cell contact but allows diffusion of paracrine signals. While an ASC-conditioned medium 

has been shown in past studies to positively affect EC outgrowth and vessel formation, it did 

not induce angiogenic vessel sprouting.55,60 Similar observations were made in our 

multitissue interface model, where vascularization was confined within the tissue sphere. 

Collectively, such findings further suggest that ASC–ECFC crosstalk positively influences 

vasculogenesis through ASC-mediated paracrine signaling as well as transmission of matrix 

mechanophysical signals.

Increasing the ASC Density within the Surrounding Tissue of the Multitissue Interface 
Construct Further Enhances Vascularization within the Tissue Sphere and across the 
Tissue–Tissue Boundary

Because enhanced vasculogenesis was observed at a low density of ASCs (0.1 × 106 

cells/mL) in the surrounding tissue, we hypothesized that increased ASC density would lead 

to increased vessel volume percentage within the tissue sphere and also facilitate vessel 

elongation (angiogenesis) across the tissue interface. Once again, all of the tissue spheres 

were prepared with 5 × 106 ECFCs/mL at a volume of 5 μL within 200 Pa oligomer 

collagen. After 3 days of culture, enhanced vasculogenesis within the tissue sphere was 

evident both qualitatively and quantitatively, with an increase in the vessel volume 

percentage with increasing ASC density (Figure 7A,B). The increase in vessel volume 

percentage was further correlated to the EVN percentage, with EVN percentages of 80%, 

90%, and 94% for groups containing 0.1 × 106, 0.2 × 106, and 0.5 × 106 ASCs/mL, 

respectively. Therefore, the extent of vascularization within the tissue sphere was positively 

correlated with the ASC density in the surrounding tissue. Furthermore, ASCs assumed a 

pericyte-like role, migrating toward the abluminal wall of the vessels (Figure S3), which is 

consistent with previous findings in 3D models using fibrin.58

Another interesting finding was the modulation of vascularization events at the tissue–tissue 

boundary as a function of ASC density. As shown in Figure 7C, when the surrounding 

tissues were seeded with lower ASC densities (0.1 × 106 and 0.2 × 106 ASCs/mL), 

vascularization events were confined primarily to the tissue spheres. However, constructs 
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containing 0.5 × 106 ASCs/mL showed enhanced vasculogenesis within the sphere as well 

as vessel elongation or angiogenesis across the tissue interface (Figure 7C). Furthermore, the 

amount and extent of ASC orientation toward the sphere increased with ASC seeding 

density (Figure 8). It is well-established that ECFC-secreted platelet-derived growth factor 

BB (PDGF-BB) is a potent chemoattractant for not only pericytes but also ASCs,61–63 

making paracrine signaling likely to have contributed to ASC alignment. Another possible 

contributing factor is mechanotransductive cues. Previous research involving the in vitro EC 

spheroid model showed that cell traction forces of the EC spheroid radially align collagen 

fibrils, creating collagen “paths” extending outward from the EC spheroid.49 Additionally, 

EC spheroids showed preferential angiogenic sprouting toward one another even when 

located 600–800 μm apart. Interestingly their observed long-distance angiogenic sprouting 

was preceded by matrix reorganization. In our model, we observed increased collagen-fibril 

alignment or “paths” with increasing ASC density in the surrounding tissue for distances 

exceeding 1000 μm (Figure 8). The distance of ECM alignment was positively correlated 

with the ASC density in the surrounding tissue. Our current observations combined with 

those reported in the literature provide evidence that ECFC–ASC crosstalk across tissue 

boundaries, including cell–matrix mechanophysical forces as well as paracrine signaling, are 

important vascularization determinants, contributing to both early-stage vasculogenesis and 

later-stage angiogenesis and vessel elongation.

CONCLUSION

Vasculogenesis and angiogenesis are dynamic and integrated neovascularization processes 

that require complex spatiotemporal cell–cell, cell–matrix, and soluble factor signaling. 

Herein we have described a novel in vitro multitissue interface model that is ideally suited 

for diverse vascularization studies, including vascularization across tissue–tissue interfaces, 

because it recapitulates a number of elements associated with in vivo developmental 

vasculogenesis. Conventional in vitro models focus on vasculogenesis (de novo formation of 

blood vessels) or angiogenesis (sprouting of vessels from existing vessels or EC 

monolayers). However, the multitissue interface model captures both initial de novo 

vasculogenesis within the tissue sphere and later-stage angiogenesis marked by vessel 

sprouting and elongation into the surrounding tissue compartment. Creating a model with 

defined and highly reproducible tissue–tissue interfaces involved the application of surfaces 

with uniquely engineered surface wettability patterns that could capture and support various-

sized tissue spheres. Reproducible model development was further facilitated by the use of 

collagen oligomers, which polymerize rapidly (roughly 10 min) and can be formulated to 

create a broad range of interstitial type I collagen fibril microenvironments (beyond 2000 

Pa).26 Conventional collagen monomer matrices, even when used at high concentrations, 

yield compliant matrices with stiffness values of roughly 200 Pa or less.26 However, the 

model shown herein allows control over each tissue microenvironment in terms of matrix 

composition and physical properties, cell type, and cell density. Importantly, the boundary 

conditions for the multitissue construct allowed the generation of a component tissue 

compartment with unprecedented cell densities while avoiding the cell-mediated tissue 

contraction routinely observed in high-cell-density tissues formed via conventional 

monodispersion methods. The rapid vasculogenesis observed in the tissue sphere was 
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supported by a combination of high cell density and sufficient ECFC–matrix 

mechanophysical interactions. The stable boundary conditions and microstructure 

mechanical properties of the collagen-fibril matrix enabled ECFCs to quickly generate the 

necessary matrix traction force to guide the formation, maturation, and stabilization of 

vessel networks. Furthermore, the well-documented benefits provided by ASC paracrine 

signaling were undeniably present in our system; however, it was evident that cell–matrix 

tensional forces transmitted between tissue compartments also played a role in later-stage 

angiogenic vessel elongation. While the present work demonstrates the utility of this model 

for mechanistic studies of tissue and tissue–interface vascularization, the model has broader 

applications, including bone–soft tissue interactions, tumor–stroma interactions, blood–brain 

barrier, hematopoietic stem cell niche, and islet–vascular interactions. This novel in vitro 

model is expected to provide guiding principles for the design of complex multitissue 

systems, including vascularized tissue-engineered constructs for tissue engineering and 

regenerative medicine applications.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A, C) Schematic diagrams and (B, D) boundary conditions for (A, B) homogeneous 

monodispersion and (C, D) multitissue interface culture formats. Monodispersion cultures 

involve homogeneous distribution of cells within a surrounding collagen-fibril matrix. 

Multitissue interface cultures are created by embedding a cell–collagen tissue sphere within 

a surrounding cell–collagen tissue construct.
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Figure 2. 
(A) Schematic diagram demonstrating interactions of a droplet with surfaces having uniform 

wetting properties. (B) Biphilic surfaces with hydrophilic spots surrounded by 

superhydrophobic regions used to form collagen or tissue spheres. The superhydrophobic 

areas facilitate sphere formation, while the hydrophilic spots assist in deposition and 

adhesion of spheres to the substrate. (C) Overview of the tissue sphere formation process. 

Aliquots of neutralized oligomer solution in the presence or absence of cells are deposited 

onto the hydrophilic spots of the biphilic surface. The surface is subsequently placed into a 

humidified 37 °C incubator to induce self-assembly of collagen fibrils (polymerization). The 

rightmost photograph shows oligomer collagen spheres with volumes of 15, 10, and 5 μL 

formed on the biphilic surface.
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Figure 3. 
(A) Representative goniometer images and volumetric measurements for oligomer spheres 

prepared at target volumes of 5, 10, and 15 μL with matrix stiffnesses of 0 (water), 200, and 

1000 Pa (specified by the oligomer concentration). The goniometer images represent 

oligomer spheres (200 Pa) prepared at designated volumes (scale bar = 1 mm). Target 

volume indicates the volume specified on the air-displacement (Air) or positive-

displacement (Pos) micropipette. (B) Scatter plot of measured oligomer sphere volumes and 

aspect ratios for all of the matrix stiffness values. Data points represent a combination of 0, 

200, and 1000 Pa oligomer spheres.
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Figure 4. 
Time-dependent contraction of tissue constructs prepared using (top) the monodispersion 

format and (bottom) the multitissue interface method. Monodispersion constructs were 

prepared by seeding 0.5 × 106, 2.0 × 106, or 5.0 × 106 ECFCs/mL within an oligomer matrix 

(200 Pa). Multitissue interface constructs involved embedding an oligomer sphere (200 Pa, 5 

μL; arrows) prepared with 0.5 × 106, 2.0 × 106, or 5.0 × 106 ECFCs/mL within a 

surrounding tissue consisting of 0.5 × 106 ECFCs/mL within an oligomer matrix (200 Pa). 

Final tissue volumes were measured after 72 h of culture and compared statistically using 

Tukey’s test. Letters indicate statistically different groups (p < 0.05).
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Figure 5. 
Projections of confocal image stacks (50 μm thick) illustrating vessel network formation 

(green fluorescence, lectin) and type IV collagen deposition (red fluorescence) following 3 

days of culture in either (A) the monodispersion format or (B) the multitissue interface 

format. Confocal images were taken within the tissue sphere of the multitissue interface 

format. Monodispersion constructs were prepared by seeding ECFCs at specified densities 

within an oligomer matrix (200 Pa, 250 μL). Multitissue interface constructs were prepared 

by embedding an oligomer sphere (200 Pa, 5 μL) prepared with ECFCs at a specified density 

within a surrounding tissue consisting of 0.5 × 106 ECFCs/mL within an oligomer matrix 

(200 Pa, 250 μL). After 3 days of culture, the 5 × 106 ECFCs/mL sphere demonstrated 

superior vessel network formation relative to the other groups. Scale bars = 150 μm.
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Figure 6. 
Projections of confocal image stacks (200 μm thick) taken within the tissue sphere, 

illustrating vessel network formation and basement membrane deposition for various 

multitissue interface constructs after 3 days of culture. ECFC-encapsulated oligomer spheres 

(200 Pa, 5 × 106 ECFCs/mL, 5 μL) were embedded in oligomer matrices (200 Pa, 250 μL) 

seeded with either (A) no accessory cells, (B) ECFCs only, (C) ASCs only, or (D) a 

combination of ECFCs and ASCs. Tissue constructs were stained with UEA1 lectin (green 

fluorescence) and type IV collagen (red fluorescence) for visualization of ECFC vessel 

networks and deposited basement membrane, respectively. The inset at the bottom right in 

each panel contains quantified vessel morphology parameters and vessel volume 

percentages. The vessel volume percentage increased significantly with the presence of 

ASCs in the surrounding tissue, as determined using Tukey’s test. Superscript letters 

indicate statistically different groups (p < 0.05). Scale bars = 150 μm.
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Figure 7. 
(A) Projections of confocal image stacks (200 μm thick) illustrating vessel network 

formation and basement membrane deposition within the tissue sphere for various 

multitissue interface constructs after 3 days of culture. ECFC-encapsulated oligomer spheres 

(200 Pa, 5 × 106 ECFCs/mL, 5 μL) were embedded in oligomer matrices (200 Pa, 250 μL) 

seeded with ASCs at either 0.1 × 106, 0.2 × 106, or 0.5 × 106 cells/mL. Tissue constructs 

were stained with UEA1 lectin (green fluorescence) and anti-type IV collagen (red 

fluorescence) for visualization of ECFC vessel networks and deposited basement membrane, 

respectively. Scale bars = 150 μm. (B) Quantified vessel morphology parameters show that 

the vessel volume percentage as well as the percentage of extensive vessel networks were 

positively correlated with the ASC density. Tukey’s test was used to compare groups. 

Superscript letters indicate statistically different groups (p < 0.05). (C) Projection of 

confocal image stacks (50 μm thick) illustrating vessel network formation at and across the 

tissue–tissue interface (dotted line). Tissue constructs were stained with phalloidin (green 

fluorescence) and anti-type IV collagen (red fluorescence) for visualization of cells and 

deposited basement membrane, respectively. Scale bars = 150 μm.

Buno et al. Page 24

ACS Appl Mater Interfaces. Author manuscript; available in PMC 2016 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
(left) Schematic showing imaging areas with specified distances from the sphere. (center) 

Projections of confocal image stacks (30 μm thick) outside the tissue sphere for various 

multitissue interface constructs after 3 days of culture. ECFC-encapsulated oligomer spheres 

(200 Pa, acellular or 5 × 106 ECFCs/mL, 5 μL) were embedded in oligomer matrices (200 

Pa, 250 μL) seeded with ASCs at either 0.0 × 106, 0.1 × 106, 0.2 × 106, or 0.5 × 106 

cells/mL. Tissue constructs were stained with phalloidin (green fluorescence) for 

visualization of ASC orientation, and confocal reflectance was used to visualize the 

collagen-fibril microstructure (red fluorescence). Increasing the ASC density in the 

surrounding tissue increases the collective cell-mediated traction force, leading to tension-

induced alignment of collagen fibrils. Parallel alignment of collagen fibrils appears to be 

positively correlated with the ASC seeding density. Constructs with 0.5 × 106 ASCs/mL 

yielded higher alignment at distances farther away from the sphere compared with the other 

groups. Scale bar = 150 μm. (right) Bar graphs displaying the alignment of the collagen 

fibrils (red) and ASCs (green) for each respective group.
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