17 research outputs found

    In Situ Monitoring of Transiently Formed Molecular Chaperone Assemblies in Bacteria, Yeast, and Human Cells.

    Get PDF
    J-domain proteins (JDPs) form the largest and the most diverse co-chaperone family in eukaryotic cells. Recent findings show that specific members of the JDP family could form transient heterocomplexes in eukaryotes to fine-tune substrate selection for the 70 kDa heat shock protein (Hsp70) chaperone-based protein disaggregases. The JDP complexes target acute/chronic stress induced aggregated proteins and presumably help assemble the disaggregases by recruiting multiple Hsp70s to the surface of protein aggregates. The extent of the protein quality control (PQC) network formed by these physically interacting JDPs remains largely uncharacterized in vivo. Here, we describe a microscopy-based in situ protein interaction assay named the proximity ligation assay (PLA), which is able to robustly capture these transiently formed chaperone complexes in distinct cellular compartments of eukaryotic cells. Our work expands the employment of PLA from human cells to yeast (Saccharomyces cerevisiae) and bacteria (Escherichia coli), thus rendering an important tool to monitor the dynamics of transiently formed protein assemblies in both prokaryotic and eukaryotic cells

    Antibody tests for identification of current and past infection with SARS-CoV-2

    Get PDF
    Background The diagnostic challenges associated with the COVID‐19 pandemic resulted in rapid development of diagnostic test methods for detecting SARS‐CoV‐2 infection. Serology tests to detect the presence of antibodies to SARS‐CoV‐2 enable detection of past infection and may detect cases of SARS‐CoV‐2 infection that were missed by earlier diagnostic tests. Understanding the diagnostic accuracy of serology tests for SARS‐CoV‐2 infection may enable development of effective diagnostic and management pathways, inform public health management decisions and understanding of SARS‐CoV‐2 epidemiology. Objectives To assess the accuracy of antibody tests, firstly, to determine if a person presenting in the community, or in primary or secondary care has current SARS‐CoV‐2 infection according to time after onset of infection and, secondly, to determine if a person has previously been infected with SARS‐CoV‐2. Sources of heterogeneity investigated included: timing of test, test method, SARS‐CoV‐2 antigen used, test brand, and reference standard for non‐SARS‐CoV‐2 cases. Search methods The COVID‐19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) was searched on 30 September 2020. We included additional publications from the Evidence for Policy and Practice Information and Co‐ordinating Centre (EPPI‐Centre) ‘COVID‐19: Living map of the evidence’ and the Norwegian Institute of Public Health ’NIPH systematic and living map on COVID‐19 evidence’. We did not apply language restrictions. Selection criteria We included test accuracy studies of any design that evaluated commercially produced serology tests, targeting IgG, IgM, IgA alone, or in combination. Studies must have provided data for sensitivity, that could be allocated to a predefined time period after onset of symptoms, or after a positive RT‐PCR test. Small studies with fewer than 25 SARS‐CoV‐2 infection cases were excluded. We included any reference standard to define the presence or absence of SARS‐CoV‐2 (including reverse transcription polymerase chain reaction tests (RT‐PCR), clinical diagnostic criteria, and pre‐pandemic samples). Data collection and analysis We use standard screening procedures with three reviewers. Quality assessment (using the QUADAS‐2 tool) and numeric study results were extracted independently by two people. Other study characteristics were extracted by one reviewer and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and, for meta‐analysis, we fitted univariate random‐effects logistic regression models for sensitivity by eligible time period and for specificity by reference standard group. Heterogeneity was investigated by including indicator variables in the random‐effects logistic regression models. We tabulated results by test manufacturer and summarised results for tests that were evaluated in 200 or more samples and that met a modification of UK Medicines and Healthcare products Regulatory Agency (MHRA) target performance criteria. Main results We included 178 separate studies (described in 177 study reports, with 45 as pre‐prints) providing 527 test evaluations. The studies included 64,688 samples including 25,724 from people with confirmed SARS‐CoV‐2; most compared the accuracy of two or more assays (102/178, 57%). Participants with confirmed SARS‐CoV‐2 infection were most commonly hospital inpatients (78/178, 44%), and pre‐pandemic samples were used by 45% (81/178) to estimate specificity. Over two‐thirds of studies recruited participants based on known SARS‐CoV‐2 infection status (123/178, 69%). All studies were conducted prior to the introduction of SARS‐CoV‐2 vaccines and present data for naturally acquired antibody responses. Seventy‐nine percent (141/178) of studies reported sensitivity by week after symptom onset and 66% (117/178) for convalescent phase infection. Studies evaluated enzyme‐linked immunosorbent assays (ELISA) (165/527; 31%), chemiluminescent assays (CLIA) (167/527; 32%) or lateral flow assays (LFA) (188/527; 36%). Risk of bias was high because of participant selection (172, 97%); application and interpretation of the index test (35, 20%); weaknesses in the reference standard (38, 21%); and issues related to participant flow and timing (148, 82%). We judged that there were high concerns about the applicability of the evidence related to participants in 170 (96%) studies, and about the applicability of the reference standard in 162 (91%) studies. Average sensitivities for current SARS‐CoV‐2 infection increased by week after onset for all target antibodies. Average sensitivity for the combination of either IgG or IgM was 41.1% in week one (95% CI 38.1 to 44.2; 103 evaluations; 3881 samples, 1593 cases), 74.9% in week two (95% CI 72.4 to 77.3; 96 evaluations, 3948 samples, 2904 cases) and 88.0% by week three after onset of symptoms (95% CI 86.3 to 89.5; 103 evaluations, 2929 samples, 2571 cases). Average sensitivity during the convalescent phase of infection (up to a maximum of 100 days since onset of symptoms, where reported) was 89.8% for IgG (95% CI 88.5 to 90.9; 253 evaluations, 16,846 samples, 14,183 cases), 92.9% for IgG or IgM combined (95% CI 91.0 to 94.4; 108 evaluations, 3571 samples, 3206 cases) and 94.3% for total antibodies (95% CI 92.8 to 95.5; 58 evaluations, 7063 samples, 6652 cases). Average sensitivities for IgM alone followed a similar pattern but were of a lower test accuracy in every time slot. Average specificities were consistently high and precise, particularly for pre‐pandemic samples which provide the least biased estimates of specificity (ranging from 98.6% for IgM to 99.8% for total antibodies). Subgroup analyses suggested small differences in sensitivity and specificity by test technology however heterogeneity in study results, timing of sample collection, and smaller sample numbers in some groups made comparisons difficult. For IgG, CLIAs were the most sensitive (convalescent‐phase infection) and specific (pre‐pandemic samples) compared to both ELISAs and LFAs (P < 0.001 for differences across test methods). The antigen(s) used (whether from the Spike‐protein or nucleocapsid) appeared to have some effect on average sensitivity in the first weeks after onset but there was no clear evidence of an effect during convalescent‐phase infection. Investigations of test performance by brand showed considerable variation in sensitivity between tests, and in results between studies evaluating the same test. For tests that were evaluated in 200 or more samples, the lower bound of the 95% CI for sensitivity was 90% or more for only a small number of tests (IgG, n = 5; IgG or IgM, n = 1; total antibodies, n = 4). More test brands met the MHRA minimum criteria for specificity of 98% or above (IgG, n = 16; IgG or IgM, n = 5; total antibodies, n = 7). Seven assays met the specified criteria for both sensitivity and specificity. In a low‐prevalence (2%) setting, where antibody testing is used to diagnose COVID‐19 in people with symptoms but who have had a negative PCR test, we would anticipate that 1 (1 to 2) case would be missed and 8 (5 to 15) would be falsely positive in 1000 people undergoing IgG or IgM testing in week three after onset of SARS‐CoV‐2 infection. In a seroprevalence survey, where prevalence of prior infection is 50%, we would anticipate that 51 (46 to 58) cases would be missed and 6 (5 to 7) would be falsely positive in 1000 people having IgG tests during the convalescent phase (21 to 100 days post‐symptom onset or post‐positive PCR) of SARS‐CoV‐2 infection. Authors' conclusions Some antibody tests could be a useful diagnostic tool for those in whom molecular‐ or antigen‐based tests have failed to detect the SARS‐CoV‐2 virus, including in those with ongoing symptoms of acute infection (from week three onwards) or those presenting with post‐acute sequelae of COVID‐19. However, antibody tests have an increasing likelihood of detecting an immune response to infection as time since onset of infection progresses and have demonstrated adequate performance for detection of prior infection for sero‐epidemiological purposes. The applicability of results for detection of vaccination‐induced antibodies is uncertain

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Pathological characteristics of mediastinal masses in Sri Lanka 2017-2021: a retrospective observational study.

    No full text
    The integration of patient demographic characteristics with clinical and radiological features helps establish accurate presumptive diagnosis of mediastinal masses, which, in turn, ensures timely initiation of treatment and improves prognosis https://bit.ly/3vB3zCw

    Demographic, Clinical Features and Outcome Determinants of Thoracic Trauma in Sri Lanka: A Multicentre Prospective Cohort Study

    No full text
    Prognostic determinants in thoracic trauma are of major public health interest. We intended to describe patterns of thoracic trauma, demographic factors, clinical course, and predictors of outcome in selected tertiary care hospitals in Sri Lanka. A multicentre prospective cohort study was conducted in five leading teaching hospitals from June to September 2017. Patients with thoracic trauma were followed up during the hospital stay. A logistic regression analysis was conducted using in-hospital morbidity as the dichotomous outcome variable. One hundred seventy-one patients were included in the study yielding 1450 (median = 8.5) person-days of observation. Of them, 71.9% (n = 123) were males. The mean age was 45.8 ± 17.9 years. Majority (39.2%, n = 67) were recruited from the National Hospital of Sri Lanka. Automobile accidents were the commonest (62.6%, n = 107), followed by falls (26.9%, n = 46), assaults (8.8%, n = 15), and animal attacks (1.8%, n = 3). The ratio of blunt to penetrating trauma was 5.6 : 1. Injury patterns were rib fractures (80.7%, n = 138), haemothorax (44.4%, n = 76), pneumothorax (44.4%, n = 76), lung contusion (22.8%, n = 39), flail segment (15.8%, n = 27), tracheobronchial trauma (7.0%, n = 12), diaphragmatic injury (2.3%, n = 4), vascular injury (2.3%, n = 4), cardiac contusions (1.1%, n = 2), and oesophageal injury (0.6%, n = 1). Ninety nine (57.9%) had extrathoracic injuries. Majority (63.2%, n = 108) underwent operative management including intercostal tube insertion (60.8%, n = 104), wound exploration (6.4%, n = 11), thoracotomy (4.1%, n = 7), rib reconstruction (4.1%, n = 7), and video-assisted thoracoscopic surgery (2.9%, n = 5). Pneumonia (10.5%, n = 8), bronchopleural fistulae (2.3%, n = 4), tracheaoesophageal fistulae (1.8%, n = 3), empyema (1.2%, n = 2), and myocardial infarction (1.2%, n = 2) were the commonest postoperative complications. The mean hospital stay was 15.6 ± 18.0 days. The in-hospital mortality was 11 (6.4%). The binary logistic regression analysis with five predictors (age, gender, mechanism of injury (automobile/fall/assault), type of trauma (blunt/penetrating), and the presence of extrathoracic injuries) was statistically significant to predict in-hospital morbidity (X2 (6, n = 168) = 13.1; p=0.041), explaining between 7.5% (Cox and Snell R2) and 14.5% (Nagelkerke R2) of variance. The automobile accidents (OR: 2.3, 95% CI = 0.2–26.2) and being males (OR: 2.3, 95% CI = 0.6–9.0) were the strongest predictors of morbidity

    An improved technical trick for identification of the thoracodorsal nerve during axillary clearance surgery: a cadaveric dissection study

    No full text
    Abstract Background Accurate anatomical landmarks to locate the thoracodorsal nerve are important in axillary clearance surgery. Methods Twenty axillary dissections were carried out on ten preserved Sri Lankan cadavers. Cadavers were positioned dorsal decubitus with upper limbs abducted to 900. An incision was made in the upper part of the anterior axillary line. The lateral thoracic vein was identified and traced bi-directionally. The anatomical location of the thoracodorsal nerve was studied in relation to the lateral border of pectoralis minor and from a point along the lateral thoracic vein, 2 cm inferior to its confluence with the axillary vein. Results The lateral thoracic vein was invariably present in all the specimens. All the lateral thoracic veins passed lateral to the lateral border of pectoralis minor except in one specimen, where the lateral thoracic vein passed along its lateral border. The thoracodorsal nerve was consistently present posterolateral to the lateral thoracic vein. The mean distance to the lateral thoracic vein from the lateral border of pectoralis minor was 28.7 ± 12.6 mm. The mean horizontal distance, depth, and displacement, from a point along the lateral thoracic vein, 2 cm inferior to its confluence with the axillary vein to the thoracodorsal nerve were 14.5 ± 8.9 mm, 19.7 ± 7.3 mm and 25 ± 5 mm respectively. The thoracodorsal nerve was found in a posterolateral direction, at a 540 ± 120 angle to the horizontal plane, 95% of the time. Conclusions The lateral thoracic vein is an accurate guide to the thoracodorsal nerve. We recommend exploring for the thoracodorsal nerve from a point 2 cm from the confluence of the lateral thoracic vein and the axillary vein for a distance of 25 ± 5 mm in a posterolateral direction, at a 540 ± 120 angle to the horizontal plane

    Central and peripheral mechanisms of pain in fibromyalgia: scoping review protocol

    No full text
    Fibromyalgia is characterised by widespread musculoskeletal pain, which may present with fatigue, depression, anxiety, sleep and cognitive disturbances. It is the second most prevalent rheumatic disease. An accurate diagnosis is challenging, since its symptoms may resemble diverse conditions such as carpal tunnel syndrome, Raynaud syndrome, Sjogren syndrome, amongst others. Neuropathic pain and autonomic dysfunction in fibromyalgia suggest the involvement of the nervous system. Ion channels, neurotransmitters and neuromodulators may play a role. Small fibre neuropathy (SFN) may also cause chronic widespread pain. SFN may occur in 50% of fibromyalgia patients, but its role in the disease is unknown. Despite several efforts to synthesise the evidence on the mechanisms for pain in fibromyalgia, there are few studies applying an integrative perspective of neurochemical, immunological, and neuroanatomical characteristics, and their relevance to the disease. This protocol aims to clarify the mechanisms of the central and peripheral nervous system associated with pain in fibromyalgia. We will retrieve published studies from Web of Science, MEDLINE, Scopus, EBSCOhost, Ovid and Google Scholar. All clinical studies or experimental models of fibromyalgia reporting imaging, neurophysiological, anatomical, structural, neurochemical, or immunological characteristics of the central or peripheral nervous systems associated with pain will be included. Exclusion criteria will eliminate studies evaluating pain without a standardised measure, studies written in languages different from Spanish or English that could not be appropriately translated, and studies whose full-text files could not be retrieved after all efforts made. A narrative synthesis will be performed.info:eu-repo/semantics/publishedVersio
    corecore