81 research outputs found

    Unsupervised quality estimation for neural machine translation

    Get PDF
    Quality Estimation (QE) is an important component in making Machine Translation (MT) useful in real-world applications, as it is aimed to inform the user on the quality of the MT output at test time. Existing approaches require large amounts of expert annotated data, computation and time for training. As an alternative, we devise an unsupervised approach to QE where no training or access to additional resources besides the MT system itself is required. Different from most of the current work that treats the MT system as a black box, we explore useful information that can be extracted from the MT system as a by-product of translation. By employing methods for uncertainty quantification, we achieve very good correlation with human judgments of quality, rivalling state-of-the-art supervised QE models. To evaluate our approach we collect the first dataset that enables work on both black-box and glass-box approaches to QE

    Backtranslation feedback improves user confidence in MT, not quality

    Get PDF
    This is an accepted manuscript of an article published by ACL in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 21). in June 2021. The accepted version of the publication may differ from the final published version.Translating text into a language unknown to the text’s author, dubbed outbound translation, is a modern need for which the user experience has significant room for improvement, beyond the basic machine translation facility. We demonstrate this by showing three ways in which user confidence in the outbound translation, as well as its overall final quality, can be affected: backward translation, quality estimation (with alignment) and source paraphrasing. In this paper, we describe an experiment on outbound translation from English to Czech and Estonian. We examine the effects of each proposed feedback module and further focus on how the quality of machine translation systems influence these findings and the user perception of success. We show that backward translation feedback has a mixed effect on the whole process: it increases user confidence in the produced translation, but not the objective quality

    Different molecular bases underlie the mitochondrial respiratory activity in the homoeothermic spadices of Symplocarpus renifolius and the transiently thermogenic appendices of Arum maculatum

    Get PDF
    Symplocarpus renifolius and Arum maculatum are known to produce significant heat during the course of their floral development, but they use different regulatory mechanisms, i.e. homoeothermic compared with transient thermogenesis. To further clarify the molecular basis of species-specific thermogenesis in plants, in the present study we have analysed the native structures and expression patterns of the mitochondrial respiratory components in S. renifolius and A. maculatum. Our comparative analysis using Blue native PAGE combined with nano LC (liquid chromatography)-MS/MS (tandem MS) has revealed that the constituents of the respiratory complexes in both plants were basically similar, but that several mitochondrial components appeared to be differently expressed in their thermogenic organs. Namely, complex II in S. renifolius was detected as a 340 kDa product, suggesting an oligomeric or supramolecular structure in vivo. Moreover, the expression of an external NAD(P)H dehydrogenase was found to be higher in A. maculatum than in S. renifolius, whereas an internal NAD(P)H dehydrogenase was expressed at a similar level in both species. Alternative oxidase was detected as smear-like signals that were elongated on the first dimension with a peak at around 200 kDa in both species. The significance and implication of these data are discussed in terms of thermoregulation in plants

    Slow Dissociation of a Charged Ligand: Analysis of the Primary Quinone QA Site of Photosynthetic Bacterial Reaction Centers

    Get PDF
    Reaction centers (RCs) are integral membrane proteins that undergo a series of electron transfer reactions during the process of photosynthesis. In the QA site of RCs from Rhodobacter sphaeroides, ubiquinone-10 is reduced, by a single electron transfer, to its semiquinone. The neutral quinone and anionic semiquinone have similar affinities, which is required for correct in situ reaction thermodynamics. A previous study showed that despite similar affinities, anionic quinones associate and dissociate from the QA site at rates ≈104 times slower than neutral quinones indicating that anionic quinones encounter larger binding barriers (Madeo, J.; Gunner, M. R. Modeling binding kinetics at the QA site in bacterial reaction centers. Biochemistry2005, 44, 10994–11004). The present study investigates these barriers computationally, using steered molecular dynamics (SMD) to model the unbinding of neutral ground state ubiquinone (UQ) and its reduced anionic semiquinone (SQ–) from the QA site. In agreement with experiment, the SMD unbinding barrier for SQ– is larger than for UQ. Multi Conformational Continuum Electrostatics (MCCE), used here to calculate the binding energy, shows that SQ– and UQ have comparable affinities. In the QA site, there are stronger binding interactions for SQ– compared to UQ, especially electrostatic attraction to a bound non-heme Fe2+. These interactions compensate for the higher SQ– desolvation penalty, allowing both redox states to have similar affinities. These additional interactions also increase the dissociation barrier for SQ– relative to UQ. Thus, the slower SQ– dissociation rate is a direct physical consequence of the additional binding interactions required to achieve a QA site affinity similar to that of UQ. By a similar mechanism, the slower association rate is caused by stronger interactions between SQ– and the polar solvent. Thus, stronger interactions for both the unbound and bound states of charged and highly polar ligands can slow their binding kinetics without a conformational gate. Implications of this for other systems are discussed

    Interactions of melatonin with mammalian mitochondria. Reducer of energy capacity and amplifier of permeability transition.

    Get PDF
    Melatonin, a metabolic product of the amino acid tryptophan, induces a dose-dependent energy drop correlated with a decrease in the oxidative phosphorylation process in isolated rat liver mitochondria. This effect involves a gradual decrease in the respiratory control index and significant alterations in the state 4/state 3 transition of membrane potential (ΔΨ). Melatonin, alone, does not affect the insulating properties of the inner membrane but, in the presence of supraphysiological Ca2+, induces a ΔΨ drop and colloid-osmotic mitochondrial swelling. These events are sensitive to cyclosporin A and the inhibitors of Ca2+ transport, indicative of the induction or amplification of the mitochondrial permeability transition. This phenomenon is triggered by oxidative stress induced by melatonin and Ca2+, with the generation of hydrogen peroxide and the consequent oxidation of sulfydryl groups, glutathione and pyridine nucleotides. In addition, melatonin, again in the presence of Ca2+, can also induce substantial release of cytochrome C and AIF (apoptosis-inducing factor), thus revealing its potential as a pro-apoptotic agent

    No evidence for involvement of SDHD in neuroblastoma pathogenesis

    Get PDF
    BACKGROUND: Deletions in the long arm of chromosome 11 are observed in a subgroup of advanced stage neuroblastomas with poor outcome. The deleted region harbours the tumour suppressor gene SDHD that is frequently mutated in paraganglioma and pheochromocytoma, which are, like neuroblastoma, tumours originating from the neural crest. In this study, we sought for evidence for involvement of SDHD in neuroblastoma. METHODS: SDHD was investigated on the genome, transcriptome and proteome level using mutation screening, methylation specific PCR, real-time quantitative PCR based homozygous deletion screening and mRNA expression profiling, immunoblotting, functional protein analysis and ultrastructural imaging of the mitochondria. RESULTS: Analysis at the genomic level of 67 tumour samples and 37 cell lines revealed at least 2 bona-fide mutations in cell lines without allelic loss at 11q23: a 4bp-deletion causing skip of exon 3 resulting in a premature stop codon in cell line N206, and a Y93C mutation in cell line NMB located in a region affected by germline SDHD mutations causing hereditary paraganglioma. No evidence for hypermethylation of the SDHD promotor region was observed, nor could we detect homozygous deletions. Interestingly, SDHD mRNA expression was significantly reduced in SDHD mutated cell lines and cell lines with 11q allelic loss as compared to both cell lines without 11q allelic loss and normal foetal neuroblast cells. However, protein analyses and assessment of mitochondrial morphology presently do not provide clues as to the possible effect of reduced SDHD expression on the neuroblastoma tumour phenotype. CONCLUSIONS: Our study provides no indications for 2-hit involvement of SDHD in the pathogenesis of neuroblastoma. Also, although a haplo-insufficient mechanism for SDHD involvement in advanced stage neuroblastoma could be considered, the present data do not provide consistent evidence for this hypothesis
    corecore