46 research outputs found
Thermoelectric properties of atomically thin silicene and germanene nanostructures
The thermoelectric properties in one- and two-dimensional silicon and germanium structures have been investigated using first-principles density functional techniques and linear response for the thermal and electrical transport. We have considered here the two-dimensional silicene and germanene, together with nanoribbons of different widths. For the nano ribbons, we have also investigated the possibility of nano structuring these systems by mixing silicon and germanium. We found that the figure of merit at room temperature of these systems is remarkably high, up to 2.5.We acknowledge financial support from CONSOLIDER INGENIO 2010: NANOTherm
(Grant No. CSD2010-00044), Diputacion Foral de Gipuzkoa (Grant No. Q4818001B), the European Research Council Advanced Grant DYNamo (Grant No. ERC-2010-AdG-267374), Spanish Grants (Grant No. FIS2010-21282-C02-01), Grupos
Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), Ikerbasque, and MAT2012-33483.Peer Reviewe
Enhanced thermoelectric properties in hybrid graphene-boron nitride nanoribbons
The thermoelectric properties of hybrid graphene-boron nitride nanoribbons
(BCNNRs) are investigated using the non-equilibrium Green's function (NEGF)
approach. We find that the thermoelectric figure of merit (ZT) can be
remarkably enhanced by periodically embedding hexagonal BN (h-BN) into graphene
nanoribbons (GNRs). Compared to pristine GNRs, the ZT for armchair-edged BCNNRs
with width index 3p+2 is enhanced up to 10~20 times while the ZT of nanoribbons
with other widths is enhanced just by 1.5~3 times. As for zigzag-edge
nanoribbons, the ZT is enhanced up to 2~3 times. This improvement comes from
the combined increase in the Seebeck coefficient and the reduction in the
thermal conductivity outweighing the decrease in the electrical conductance. In
addition, the effect of component ratio of h-BN on the thermoelectric transport
properties is discussed. These results qualify BCNNRs as a promising candidate
for building outstanding thermoelectric devices.Comment: 21 pages, 7 figure
The site conditions of the Guo Shou Jing Telescope
The weather at Xinglong Observing Station, where the Guo Shou Jing Telescope
(GSJT) is located, is strongly affected by the monsoon climate in north-east
China. The LAMOST survey strategy is constrained by these weather patterns. In
this paper, we present a statistics on observing hours from 2004 to 2007, and
the sky brightness, seeing, and sky transparency from 1995 to 2011 at the site.
We investigate effects of the site conditions on the survey plan. Operable
hours each month shows strong correlation with season: on average there are 8
operable hours per night available in December, but only 1-2 hours in July and
August. The seeing and the sky transparency also vary with seasons. Although
the seeing is worse in windy winters, and the atmospheric extinction is worse
in the spring and summer, the site is adequate for the proposed scientific
program of LAMOST survey. With a Monte Carlo simulation using historical data
on the site condition, we find that the available observation hours constrain
the survey footprint from 22h to 16h in right ascension; the sky brightness
allows LAMOST to obtain the limit magnitude of V = 19.5mag with S/N = 10.Comment: 10 pages, 8 figures, accepted for publication in RA
The Sloan Digital Sky Survey Reverberation Mapping Project: Technical Overview
The Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM) is a
dedicated multi-object RM experiment that has spectroscopically monitored a
sample of 849 broad-line quasars in a single 7 deg field with the SDSS-III
BOSS spectrograph. The RM quasar sample is flux-limited to i_psf=21.7 mag, and
covers a redshift range of 0.1<z<4.5. Optical spectroscopy was performed during
2014 Jan-Jul dark/grey time, with an average cadence of ~4 days, totaling more
than 30 epochs. Supporting photometric monitoring in the g and i bands was
conducted at multiple facilities including the CFHT and the Steward Observatory
Bok telescopes in 2014, with a cadence of ~2 days and covering all lunar
phases. The RM field (RA, DEC=14:14:49.00, +53:05:00.0) lies within the CFHT-LS
W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07,
with three prior years of multi-band PS1 light curves. The SDSS-RM 6-month
baseline program aims to detect time lags between the quasar continuum and
broad line region (BLR) variability on timescales of up to several months (in
the observed frame) for ~10% of the sample, and to anchor the time baseline for
continued monitoring in the future to detect lags on longer timescales and at
higher redshift. SDSS-RM is the first major program to systematically explore
the potential of RM for broad-line quasars at z>0.3, and will investigate the
prospects of RM with all major broad lines covered in optical spectroscopy.
SDSS-RM will provide guidance on future multi-object RM campaigns on larger
scales, and is aiming to deliver more than tens of BLR lag detections for a
homogeneous sample of quasars. We describe the motivation, design and
implementation of this program, and outline the science impact expected from
the resulting data for RM and general quasar science.Comment: 25 pages, submitted to ApJS; project website at http://www.sdssrm.or
Evolution of Star-forming Galaxies from z=0.7 to 1.2 with eBOSS Emission-line Galaxies
We study the evolution of star-forming galaxies with 10 10 M â < M â < 10 11.6 M â over the redshift range of 0.7 < z < 1.2 using the emission-line galaxies (ELGs) in the extended Baryon Oscillation Spectroscopic Survey (eBOSS). By applying the incomplete conditional stellar mass function (SMF) model proposed in Guo et al., we simultaneously constrain the sample completeness, the stellariVhalo mass relation (SHMR), and the quenched galaxy fraction. We obtain the intrinsic SMFs for star-forming galaxies in the redshift bins of 0.7 < z < 0.8, 0.8 < z < 0.9, 0.9 < z < 1.0, and 1.0 < z < 1.2, as well as the SMF for all galaxies in the redshift bin of 0.7 < z < 0.8. We find that the eBOSS ELG sample only selects about 1%-10% of the star-forming galaxy population at the different redshifts, with the lower redshift samples more complete. There is only weak evolution in the SHMR of the ELGs from z = 1.2 to z = 0.7, as well as the intrinsic galaxy SMFs. Our best-fitting models show that the central ELGs at these redshifts live in halos of mass M ⌠10 12 M â , while the satellite ELGs occupy slightly more massive halos of M ⌠10 12.6 M â . The average satellite fraction of the observed ELGs varies from 13% to 17%, with the galaxy bias increasing from 1.1 to 1.4 from z = 0.7 to 1.2
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
The Sloan Digital Sky Survey Reverberation Mapping Project: Hα and HÎČ reverberation measurements from first-year spectroscopy and photometry
Funding: UK Sciences and Technology Facilities Council STFC grant ST/M001296/1 (KH).We present reverberation mapping results from the first year of combined spectroscopic and photometric observations of the Sloan Digital Sky Survey Reverberation Mapping Project. We successfully recover reverberation time delays between the g+i band emission and the broad HÎČ emission line for a total of 44 quasars, and for the broad Hα emission line in 18 quasars. Time delays are computed using the JAVELIN and CREAM software and the traditional interpolated cross-correlation function (ICCF): using well-defined criteria, we report measurements of 32 HÎČ and 13 Hα lags with JAVELIN, 42 HÎČ and 17 Hα lags with CREAM, and 16 HÎČ and eight Hα lags with the ICCF. Lag values are generally consistent among the three methods, though we typically measure smaller uncertainties with JAVELIN and CREAM than with the ICCF, given the more physically motivated light curve interpolation and more robust statistical modeling of the former two methods. The median redshift of our HÎČ-detected sample of quasars is 0.53, significantly higher than that of the previous reverberation mapping sample. We find that in most objects, the time delay of the Hα emission is consistent with or slightly longer than that of HÎČ. We measure black hole masses using our measured time delays and line widths for these quasars. These black hole mass measurements are mostly consistent with expectations based on the local â relationship, and are also consistent with single-epoch black hole mass measurements. This work increases the current sample size of reverberation-mapped active galaxies by about two-thirds and represents the first large sample of reverberation mapping observations beyond the local universe (z < 0.3).PostprintPeer reviewe