180 research outputs found

    commanimation: Creating and managing animations via speech

    Get PDF
    A speech controlled animation system is both a useful application program as well as a laboratory in which to investigate context aware applications as well as controlling errors. The user need not have prior knowledge or experience in animation and is yet able to create interesting and meaningful animation naturally and fluently. The system can be used in a number of applications ranging from PowerPoint presentations to simulations to children’s storytelling tools.Singapore-MIT Alliance (SMA

    Network analysis of pseudogene-gene relationships: from pseudogene evolution to their functional potentials

    Get PDF
    Pseudogenes are fossil relatives of genes. Pseudogenes have long been thought of as "junk DNAs", since they do not code proteins in normal tissues. Although most of the human pseudogenes do not have noticeable functions, ∼20% of them exhibit transcriptional activity. There has been evidence showing that some pseudogenes adopted functions as lncRNAs and work as regulators of gene expression. Furthermore, pseudogenes can even be "reactivated" in some conditions, such as cancer initiation. Some pseudogenes are transcribed in specific cancer types, and some are even translated into proteins as observed in several cancer cell lines. All the above have shown that pseudogenes could have functional roles or potentials in the genome. Evaluating the relationships between pseudogenes and their gene counterparts could help us reveal the evolutionary path of pseudogenes and associate pseudogenes with functional potentials. It also provides an insight into the regulatory networks involving pseudogenes with transcriptional and even translational activities.In this study, we develop a novel approach integrating graph analysis, sequence alignment and functional analysis to evaluate pseudogene-gene relationships, and apply it to human gene homologs and pseudogenes. We generated a comprehensive set of 445 pseudogene-gene (PGG) families from the original 3,281 gene families (13.56%). Of these 438 (98.4% PGG, 13.3% total) were non-trivial (containing more than one pseudogene). Each PGG family contains multiple genes and pseudogenes with high sequence similarity. For each family, we generate a sequence alignment network and phylogenetic trees recapitulating the evolutionary paths. We find evidence supporting the evolution history of olfactory family (both genes and pseudogenes) in human, which also supports the validity of our analysis method. Next, we evaluate these networks in respect to the gene ontology from which we identify functions enriched in these pseudogene-gene families and infer functional impact of pseudogenes involved in the networks. This demonstrates the application of our PGG network database in the study of pseudogene function in disease context

    Near-infrared free carrier absorption in heavily doped silicon

    No full text
    Free carrier absorption in heavily doped silicon can have a significant impact on devices operating in the infrared. In the near infrared, the free carrier absorption process can compete with band to band absorption processes, thereby reducing the number of available photons to optoelectronic devices such as solar cells. In this work, we fabricate 18 heavily doped regions by phosphorus and boron diffusion into planar polished silicon wafers; the simple sample structure facilitates accurate and precise measurement of the free carrier absorptance. We measure and model reflectance and transmittance dispersion to arrive at a parameterisation for the free carrier absorption coefficient that applies in the wavelength range between 1000 and 1500 nm, and the range of dopant densities between ∼10¹⁸ and 3 × 10²⁰ cm⁻³. Our measurements indicate that previously published parameterisations underestimate the free carrier absorptance in phosphorus diffusions. On the other hand, published parameterisations are generally consistent with our measurements and model for boron diffusions. Our new model is the first to be assigned uncertainty and is well-suited to routine device analysis

    The Pore-Forming Protein Cry5B Elicits the Pathogenicity of Bacillus sp. against Caenorhabditis elegans

    Get PDF
    The soil bacterium Bacillus thuringiensis is a pathogen of insects and nematodes and is very closely related to, if not the same species as, Bacillus cereus and Bacillus anthracis. The defining characteristic of B. thuringiensis that sets it apart from B. cereus and B. anthracis is the production of crystal (Cry) proteins, which are pore-forming toxins or pore-forming proteins (PFPs). Although it is known that PFPs are important virulence factors since their elimination results in reduced virulence of many pathogenic bacteria, the functions by which PFPs promote virulence are incompletely understood. Here we study the effect of Cry proteins in B. thuringiensis pathogenesis of the nematode Caenorhabditis elegans. We find that whereas B. thuringiensis on its own is not able to infect C. elegans, the addition of the PFP Cry protein, Cry5B, results in a robust lethal infection that consumes the nematode host in 1–2 days, leading to a “Bob” or bag-of-bacteria phenotype. Unlike other infections of C. elegans characterized to date, the infection by B. thuringiensis shows dose-dependency based on bacterial inoculum size and based on PFP concentration. Although the infection process takes 1–2 days, the PFP-instigated infection process is irreversibly established within 15 minutes of initial exposure. Remarkably, treatment of C. elegans with Cry5B PFP is able to instigate many other Bacillus species, including B. anthracis and even “non-pathogenic” Bacillus subtilis, to become lethal and infectious agents to C. elegans. Co-culturing of Cry5B-expressing B. thuringiensis with B. anthracis can result in lethal infection of C. elegans by B. anthracis. Our data demonstrate that one potential property of PFPs is to sensitize the host to bacterial infection and further that C. elegans and probably other roundworms can be common hosts for B. cereus-group bacteria, findings with important ecological and research implications

    Proteomic analysis of 92 circulating proteins and their effects in cardiometabolic diseases

    Get PDF
    Background: Human plasma contains a wide variety of circulating proteins. These proteins can be important clinical biomarkers in disease and also possible drug targets. Large scale genomics studies of circulating proteins can identify genetic variants that lead to relative protein abundance. Methods: We conducted a meta-analysis on genome-wide association studies of autosomal chromosomes in 22,997 individuals of primarily European ancestry across 12 cohorts to identify protein quantitative trait loci (pQTL) for 92 cardiometabolic associated plasma proteins. Results: We identified 503 (337 cis and 166 trans) conditionally independent pQTLs, including several novel variants not reported in the literature. We conducted a sex-stratified analysis and found that 118 (23.5%) of pQTLs demonstrated heterogeneity between sexes. The direction of effect was preserved but there were differences in effect size and significance. Additionally, we annotate trans-pQTLs with nearest genes and report plausible biological relationships. Using Mendelian randomization, we identified causal associations for 18 proteins across 19 phenotypes, of which 10 have additional genetic colocalization evidence. We highlight proteins associated with a constellation of cardiometabolic traits including angiopoietin-related protein 7 (ANGPTL7) and Semaphorin 3F (SEMA3F). Conclusion: Through large-scale analysis of protein quantitative trait loci, we provide a comprehensive overview of common variants associated with plasma proteins. We highlight possible biological relationships which may serve as a basis for further investigation into possible causal roles in cardiometabolic diseases

    Proteomic analysis of 92 circulating proteins and their effects in cardiometabolic diseases

    Get PDF
    BACKGROUND: Human plasma contains a wide variety of circulating proteins. These proteins can be important clinical biomarkers in disease and also possible drug targets. Large scale genomics studies of circulating proteins can identify genetic variants that lead to relative protein abundance.METHODS: We conducted a meta-analysis on genome-wide association studies of autosomal chromosomes in 22,997 individuals of primarily European ancestry across 12 cohorts to identify protein quantitative trait loci (pQTL) for 92 cardiometabolic associated plasma proteins.RESULTS: We identified 503 (337 cis and 166 trans) conditionally independent pQTLs, including several novel variants not reported in the literature. We conducted a sex-stratified analysis and found that 118 (23.5%) of pQTLs demonstrated heterogeneity between sexes. The direction of effect was preserved but there were differences in effect size and significance. Additionally, we annotate trans-pQTLs with nearest genes and report plausible biological relationships. Using Mendelian randomization, we identified causal associations for 18 proteins across 19 phenotypes, of which 10 have additional genetic colocalization evidence. We highlight proteins associated with a constellation of cardiometabolic traits including angiopoietin-related protein 7 (ANGPTL7) and Semaphorin 3F (SEMA3F).CONCLUSION: Through large-scale analysis of protein quantitative trait loci, we provide a comprehensive overview of common variants associated with plasma proteins. We highlight possible biological relationships which may serve as a basis for further investigation into possible causal roles in cardiometabolic diseases.</p

    The Nature of Attachment Relationships and Grief Responses in Older Adults: An Attachment Path Model of Grief

    Get PDF
    BACKGROUND: Various researchers have theorized that bereaved adults who report non-secure attachment are at higher risk of pathological grief. Yet past findings on avoidant attachment representations and grief have yielded limited and contradictory outcomes. Little research has been conducted with older adults to identify the psychological processes that mediate between self-reported attachment representations and the patterns of grief. OBJECTIVE: To examine the impacts of avoidant attachment and anxious attachment dimensions on emotion and non-acceptance, in response to the loss of a conjugal partner, and the mediating effect of yearning thoughts. DESIGN: Men (N = 21) and women (N = 68) aged 60 years and above who had lost a partner within the last 12 to 72 months were invited to participate. Participants rated their levels of yearning thoughts about the deceased, emotions and non-acceptance on the Texas Revised Inventory of Grief (TRIG-Present), and their type and level of general romantic attachment on the Experiences In Close Relationship questionnaire (ECR). RESULTS: Structural equation modelling (SEM) indicated that individuals who reported higher levels of avoidant attachment reported less emotional responses and less non-acceptance. SEM also showed that individuals who reported higher levels of anxious attachment reported greater emotional responses and greater non-acceptance. SEM further indicated that these relationships were mediated by yearning thoughts. CONCLUSION: People adopt different grief coping patterns according to their self-reported attachment representations, with the nature of their yearning thoughts influencing the process. Grief therapy may be organized according to individual differences in attachment representations

    The Ser82 RAGE variant affects lung function and serum RAGE in smokers and sRAGE production in vitro

    Get PDF
    Introduction: Genome-Wide Association Studies have identified associations between lung function measures and Chronic Obstructive Pulmonary Disease (COPD) and chromosome region 6p21 containing the gene for the Advanced Glycation End Product Receptor (AGER, encoding RAGE). We aimed to (i) characterise RAGE expression in the lung, (ii) identify AGER transcripts, (iii) ascertain if SNP rs2070600 (Gly82Ser C/T) is associated with lung function and serum sRAGE levels and (iv) identify whether the Gly82Ser variant is functionally important in altering sRAGE levels in an airway epithelial cell model. Methods: Immunohistochemistry was used to identify RAGE protein expression in 26 human tissues and qPCR was used to quantify AGER mRNA in lung cells. Gene expression array data was used to identify AGER expression during lung development in 38 fetal lung samples. RNA-Seq was used to identify AGER transcripts in lung cells. sRAGE levels were assessed in cells and patient serum by ELISA. BEAS2B-R1 cells were transfected to overexpress RAGE protein with either the Gly82 or Ser82 variant and sRAGE levels identified. Results: Immunohistochemical assessment of 6 adult lung samples identified high RAGE expression in the alveoli of healthy adults and individuals with COPD. AGER/RAGE expression increased across developmental stages in human fetal lung at both the mRNA (38 samples) and protein levels (20 samples). Extensive AGER splicing was identified. The rs2070600T (Ser82) allele is associated with higher FEV1, FEV1/FVC and lower serum sRAGE levels in UK smokers. Using an airway epithelium model overexpressing the Gly82 or Ser82 variants we found that HMGB1 activation of the RAGE-Ser82 receptor results in lower sRAGE production. Conclusions: This study provides new information regarding the expression profile and potential role of RAGE in the human lung and shows a functional role of the Gly82Ser variant. These findings advance our understanding of the potential mechanisms underlying COPD particularly for carriers of this AGER polymorphism

    Translating lung function genome-wide association study (GWAS) findings: new insights for lung biology

    Get PDF
    Chronic respiratory diseases are a major cause of worldwide mortality and morbidity. Although hereditary severe deficiency of α1 antitrypsin (A1AD) has been established to cause emphysema, A1AD accounts for only ∼1% of Chronic Obstructive Pulmonary Disease (COPD) cases. Genome-wide association studies (GWAS) have been successful at detecting multiple loci harboring variants predicting the variation in lung function measures and risk of COPD. However, GWAS are incapable of distinguishing causal from noncausal variants. Several approaches can be used for functional translation of genetic findings. These approaches have the scope to identify underlying alleles and pathways that are important in lung function and COPD. Computational methods aim at effective functional variant prediction by combining experimentally generated regulatory information with associated region of the human genome. Classically, GWAS association follow-up concentrated on manipulation of a single gene. However association data has identified genetic variants in >50 loci predicting disease risk or lung function. Therefore there is a clear precedent for experiments that interrogate multiple candidate genes in parallel, which is now possible with genome editing technology. Gene expression profiling can be used for effective discovery of biological pathways underpinning gene function. This information may be used for informed decisions about cellular assays post genetic manipulation. Investigating respiratory phenotypes in human lung tissue and specific gene knockout mice is a valuable in vivo approach that can complement in vitro work. Herein, we review state-of-the-art in silico, in vivo, and in vitro approaches that may be used to accelerate functional translation of genetic findings
    corecore