
commanimation: Creating and managing
animations via speech

Hana Kim, Nancy Kho, Emily Yan, and Larry Rudolph
Computer Science and Artificial Intelligence Laboratory

MIT
Cambridge, MA 02139

email: rudolph@csail.mit.edu

Abstract— A speech controlled animation system is both
a useful application program as well as a laboratory in
which to investigate context aware applications as well as
controlling errors. The user need not have prior knowledge
or experience in animation and is yet able to create interest-
ing and meaningful animation naturally and fluently. The
system can be used in a number of applications ranging
from PowerPoint presentations to simulations to children’s
storytelling tools.

I. INTRODUCTION

This paper describes a system, called commanima-
tion, that allows a user to create and control interesting
and meaningful animations in real-time by using speech.
It is an outgrowth of the basic work by H. Kim [17].
Animation is a very effective way of delivering informa-
tion. One can use animations in a variety of applications
ranging from simulations to PowerPoint presentations to
children’s storytelling tools. Creating or controlling ani-
mations, however, is still considered to be a specialized
task reserved for professionals. We are not interested in
producing the state of the art animations that require
an exorbitant amount of computing power. Rather, we
are interested in the process of creating animations and
inventing new tools to help novices create and control
animation effortlessly. The focus of this work is on
inventing a simple, yet versatile method of animation that
allows for interactive control. In particular, we present
a speech-driven system that allows one to create and
control animations in real time. The system also provides
traditional computer inputs – keyboard and mouse, as
fall-back methods because the speech interface is still
not quite robust to stand alone.

The user can be involved in as much or as little
as he wants in the process of creating and controlling
animation. In the default setting, the user is given pre-
defined objects and speech commands limited to creating
the background and animating characters. However, it is
possible to create new characters, as well as extend and
modify the speech commands. Furthermore, the speech
interface allows the user to create animation in real time

– a truly novel approach to animation control.
Any type of “serious” animation control system re-

quires the user to do a significant amount of work (usu-
ally scripting or key-framing), if not all of it, beforehand.
They draw a clear distinction between the creating period
and the showing period whereas our approach is to fuse
the two together. Creation of a character is like a macro
in that it can be built up from components.

The key feature of the commanimation system is
that it extends the traditional point and click control by
enabling the user to apply an operator to an object along
with a set of operands. This is significantly different from
the usual model of pushing play, fast forward, reverse,
and stop. Hypertext is a step beyond in which a click
on a particular spot causes some animation to happen.
Of course, much more interactive models are supported,
but they tend to be geared towards building an animation
of the previous sort. However, it is awkward to specify
many operands with only a mouse. That is why we
suggest to use the more natural speech interface.

The motivation of our approach came more from
the speech side. Currently, speaker independent, domain
specific speech recognition is fairly good but it is not
perfect. The errors tend to be very frustrating. However,
one class of people are not bothered by the mistakes. In
fact, they relish them. Little children find it very funny
when the computer makes a mistake. Of course it must
be the right type of mistake.

The commanimation system is described in three
sections. The animation infrastructure and basic opera-
tions are explained in Section III and the speech recog-
nition component is explained in Section IV. Section V
describes how to combine the two into a full system.

II. RELATED WORK

Our system is a part of the research in Intelligent
Environments (IE) whose goal is to involve computers
in tasks in the physical world and to “allow people to
interact with computational systems the way they would
with other people: via gesture, voice, movement, and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4381484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

context [6].” IEs are designed to make human-computer
interaction (HCI) seamless and computers invisible. In-
stead of relying on traditional computer UI primitives
like menus, mice, and windows, IEs utilize gesture,
speech, affect, and context [6][7].

There are interactive animation systems, e.g. Alice,
a 3D graphics programming environment developed at
University of Virginia and Carnegie Mellon University,
and Stagecast Creator, a simulation toolkit developed by
Stagecast Software that are similar in spirit to our work.

Alice is a 3D graphics programming environment
designed for people who do not have any 3D graphics or
programming experience [8]. In particular, they choose a
target audience, non-science/engineering undergraduates,
and design the system with their needs in mind. Author-
ing in Alice takes two steps: creating an opening scene
and scripting [8]. Similar to our system, Alice’s users
choose objects from an object gallery. Unlike our system,
Alice’s library contains a large number of low-polygon
models. The user can also import objects in popular
file formats [8]. The user creates the opening scene
by placing the objects in desired locations, setting the
camera location, and finally saving this initial state into
a world file[8]. Once the opening scene is ready, the user
can begin scripting in Python. Alice is fundamentally
different from our system in two ways. The obvious
difference is that Alice deals with 3D animation while we
are mainly interested in 2D animation. More importantly,
Alice is essentially a script-based animation control
system.

Stagecast Creator is a simulation toolkit that allows
children and other novice programmers to build inter-
active stories, games, and simulations without syntactic
programming languages. The goal of Creator is to enable
children and novice programmers to construct and mod-
ify simulations without a programming language [12].
They accomplish this goal by using two technologies:
programming by demonstration (PBD) and visual before-
after rules. Users create characters and specify how the
characters are to behave and interact [11]. First, users
either choose characters from the given list or design
their own characters. Then, they create simple rules
that govern how the characters move by demonstrating
the before and after states. Rules can also manipulate
the characters’ properties and appearances. Users can
make multiple instances of the same type character.
Every instance will have the same set of properties,
appearances, and rules; however, it has its own value for
each property and its own drawing for each appearance.
Extensive user studies have shown that Creator’s scheme,
as opposed to that of traditional programming languages
or scripting languages, is effective and well-received by
novice programmers [11][12].

III. THE ANIMATION INFRASTRUCTURE

The main goal is to create a speech-driven interface for
interactive animation control. There is a spectrum of user
control. At one end, the user merely plays the role of an
audience member using only the play and stop buttons.
At the other end, the user is responsible for creating
and controlling the majority, if not all, of the action.
We group animation control systems into three different
categories: the passive user system, where the user is an
audience member and nothing more, the limited control
system, and the interactive system. Most web animations
are examples of the limited control system, providing the
user to control a small portion of the animation through
mouse clicks or buttons. The scope of control the user
has in such systems is carefully limited by the author.
commanimation is distinguished from most inter-

active systems by its speech interface and real-time
control. Most interactive systems ask the user to write
scripts, specify key frames, or define behaviors in ad-
vance [4]. Furthermore, the user is expected to have some
level of animation knowledge and experience before-
hand. commanimation instead, invites the the user
to learn simple speech commands created with novices
in mind. More importantly, with the speech interface,
the system can be quick and responsive. It is clear how
the speech-based system can be faster in responding to
the user than the script-based system for example. Its
quick response time allows the system to be real-time.
In the real-time control model, animation takes place as
the user speaks into the system.

We build upon a commercial animation system, Flash.
Flash is a vector-based animation tool that is widely used
for gaming consoles, advertisements, user interfaces,
web games, and cartoons. Because it is vector-based,
Flash produces animations that are scalable without com-
promising clarity and resolution [16]. In addition, Flash
is quite suitable for interactive applications, and therefore
quite applicable to our task at hand. What makes Flash
a powerful development tool is its accompanying script-
ing language, ActionScript. ActionScript is an object-
oriented scripting language based on JavaScript. We use
ActionScript to manipulate characters and background
objects and to communicate with a server which, in turn,
communicates with the speech interface.

While we need not concern ourselves with most of the
details of the Flash authoring environment, it is important
to understand a very important feature of Flash – movie
clips. Movie clips are self-contained movies that run
independently of the main timeline [16]. Movie clips are
ideal for controlling a number of independent objects.
They come with a number of properties and built-in
methods one can manipulate easily. Movie clips are the
fundamental building blocks of our animation. Although

end users do not have to deal with them directly, our
animation is essentially a collection of movie clips.

There is nothing unusual about the animation system.
All the action occurs on the stage or screen. For sim-
plicity, we refer to everything that can be displayed on
the stage as an object. The object can be a character or
a thing and it can be animated or static. Imagine a dog
running down a tree-lined street. The street is a static
object. The trees swaying in the wind is also an object
but one that is being animated. It is a movie clip that is
run over and over again. The dog is also an object. The
animation shows the dog’s legs moving and the whole
object is moved across the stage.

Movie clips are produced by some means that are
irrelevant to this system, although commanimation
itself can be used to create movie clips from a set of
very primitive clips. The system need only be able to
play them and move them along the stage. We refer
to these as simple objects. There also exist composite
objects, which are composed of multiple objects both
simple and composite, along with a way of animating
them. They will be discussed after simple objects are
discussed in more detail.

A. Simple Objects

Each simple object is just a movie clip. Each sim-
ple object is specified as a file. Objects have several
attributes. An object has an initial state, which is just
an image that is the first frame of the clip. It also has a
final state, which is the last frame of the clip. It can be
animated, which is accomplished by cycling through the
frames in the clip. Usually, the animation continually
cycles through the frames. An object has a boundary
which is usually the outline of the object. This is useful
so that it does not obscure objects behind it as it moves
across the stage. There are other temporal attributes for
an object. Some exist only during the actual running of
the system whereas others reside in a database and can
exist across multiple runs of the system.

B. Operations on Objects

There are only a few basic built-in operations on an
object. An object can be created. That is, there is an
instance of the object created during runtime. There may
be many instances of an object. Each instantiation has
its own set of attributes.

An object is instantiated at a particular location on
stage. The first frame of the object is visible on the
stage at that location and it covers any other objects
that might be in the same location. It is created in
front. For simplicity, it is assumed that the stage is of
fixed dimension and precision. It is possible for multiple
instances of an object to all have the same location.
However, since objects are opaque, it is not possible to

tell if there is one or more instances of an object at the
same location. The file name of the object is used to
specify the object to be created. Since each active object
has a current location, the object acts as a synonym for
that location.

When an object is created, it is active and becomes the
object of naming. It can be given a stage name. It is often
easiest to name an object just after it has been created,
although it can happen at any time an object is active.
An instantiated object need not have a stage name, as
its file name can be used. The stage name must refer to
only one instantiated object. If the name refers to one
instantiation and a new instantiated object is assigned the
same stage name, then the old association is removed.
That is, the stage name refers to the latest naming.

An instantiated object can be destroyed. Destroy-
ing an object removes it from the stage. The file is
not removed. If an object has a stage name, that name
can be used to specify the instance to be destroyed.
If the file name is used to specify the object, then
the last instantiation is destroyed. When an object is
destroyed, its stage name is remembered and continues
to be associated with the object, or more precisely, with
the filename of the object. But this puts no restrictions
on the stage name and the name can be reused to refer
to an instance of a different object.

The system maintains a database mapping stage names
to objects. When an object is created, the system at-
tempts to assign a default name to this new instance.
This is only done if the stage name is not already in
use. A new stage name can be assigned. The default
name is just there as a convenience. If an object is
instantiated, given a stage name, destroyed, and then later
created again, it will take on the same stage name it was
originally assigned. As a side comment, note that there
is no need to provide a hide operation since it is the
same as destroying and recreating an object. A recreated
object will inherit the same stage name and location,
provided the name is still available.

This default naming leads to some interesting issues
when there are multiple stage names associated with the
same object. It is not clear which to associate with the
object and using the latest stage name does not work in
all situations. The best solution appears to let the context
disambiguate. That is, the system makes note of the set
of objects on the stage at the time of the creation of
an object. The mapping of the stage name to the object
is further augmented with these other objects. When an
object is created, the system chooses the stage name that
was given to the object when the stage was most similar.
Extensive experimentation is required to evaluate this
decision.

Two other basic operations are to play or animate

Operation Operands Comment
Create file This is either a subdirectory or non-action movie clip
Destroy object The file is left unchanged, and attributes are remembered.
Start Animating object Sometimes refereed to as performing
Stop Animating object This happens at the end of a move
Start Moving obj & loc Two parameters are required
Stop Moving object
Name It file most recent instantiated
Grow object optional parameter of the amount
Shrink object optional parameter of the amount
Animate Faster object optional parameter of the amount
Animate Slower object optional parameter of the amount
Move Faster object optional parameter of the amount
Move Slower object optional parameter of the amount
Start Building Start recording actions for new compound object
Freeze N Name stage name the object is all action since last start build cmd
Stop Building stage name same as freeze-name operation
Start Reverse Proposed new operation that undoes the
Stop Reverse operations so far executed

Fig. 1. The table lists the 18 basic operations. The top group are operations on objects, the second group are attributes of objects, the third
group is for building compound objects, and the bottom group are new proposed operations.

an object and to stop animating an object. The system
continually cycles through the frames of the object until
it is given the operation to stop. Associated with the an-
imate operation are animate faster and animate
slower.

The final operation is to move an object from its
current position to another position. While it is moving,
the clip animation is played. It stops playing when it
reaches the destination. Associated with move are the
operations move faster and move slower. Once
again, the speed for the object is remembered and learned
in just the same way a name is learned. There is a
special infinitely fast speed, which just causes the last
frame to be displayed. Similarly, there is an infinitely
slow speed which never lets the object’s animation get
past the first frame. Locations can be specified by the
absolute Cartesian coordinate system and at the very
beginning this is necessary. However, once there have
been objects put on the stage, it is then possible to use
these active objects to specify locations. Also note that
it is possible to maintain a model of the stage outside
of Flash and then convert higher level commands to the
predefined operations. For example, rather than saying
move an object to location (x,y), it is possible to map
relative locations to absolute ones by remembering the
absolute locations of all objects. So, a “move left three
steps” command can be converted to “move to (10,13)”
if it is known that the object is at location (10,16).

C. Composite Object and Freezing

A sequence of operations, can be frozen at any time.
It then becomes a composite object and is subject to all
the same operations as an external object. In fact it is
remembered beyond the session. The name it is given be-
comes its external name, which acts just like a file name.
In fact, a file is created that appears like a movie clip,
but is just a sequence of commanimation operations.
These operations include create, move, animate, etc. All
the operations from the Start Building command
and up to the Freeze N Name command are joined
together to form the composite object.

We are exploring the feasibility to add a Reverse op-
eration that allows one to undo the effects of operations.
Then it becomes easier to build composite objects from
other composite objects. That is, one builds a composite
object and gives it a name. Afterwards a new copy of this
object is created and reversed part way. Then additional
commands can be added and the object frozen to create
a new composite object.

D. File Name Conventions

The clips are named with a specific format and placed
in a specific directory. A speech domain and an anima-
tion domain are automatically generated from the clips
in the directory.

The idea is that there is a set of clips associated
with an object. There can be and often there are many
actions associated with an object, and each corresponds
to a movie clip. Each action can be animated by simply

One directory Directory Subdirectories
Penguin Penguin
Dog Dog
Dog.bow bow
Dog.dance dance
Dog.eat ice cream eat ice cream
Dog.hop hop
Dog.lick lick
Dog.run run
Dog.sit sit
Cat Cat
Cat.bow bow
Cat.eat ice cream eat ice cream
Cat.run run
Cat.hop hop
Cat.purr purr

Penguin

Penguin.bow

Penguin.dance e

Penguin.eat ice cream

Penguin.hop

Fig. 2. Examples of how clips are stored in either a single directory or in a directory with subdirectories for each object.

playing the clip or by playing the clip while the object
is moving. There are many ways to specify the set of
actions to the system. Given that the actions themselves
must be manually generated, there needs to be a separate
clip or file associated with each action. Any configura-
tion or data base will map the action to the clip. We avoid
the need of creating and maintaining such a secondary
mapping by using the natural mapping of the file name
to the file. That is, the file name itself specifies the object
and the action.

The files containing the clips can be in organized in
one of two ways. In the first way, each object has a
subdirectory and in the subdirectory are clips named
according to the actions. In the second way, all the clips
are in one directory and the file names consists of two
parts: the first is the name of the object and the second is
the action with a period separating the two fields. Multi-
word actions are accomplished with an underscore, for
example Dog.eat ice cream. Synonyms for actions
just become file links and synonyms for objects can be
directory links.

IV. SPEECH RECOGNITION AND PROCESSING

Speech recognition systems are classified as being
either speaker dependent or independent and as either
domain dependent or independent. A speaker-dependent,
domain-independent system requires training by the
speaker. Once trained, nearly every word spoken is
recognized and one has a a dictation system. This leaves
the task of interpreting the words and sentences to

some other component. A speaker-independent, domain-
specific system, on the other-hand, requires the creation
of a domain. A domain is the set of words and sentences
that are recognized. In other-words, a domain is the
grammar accepted by the speech recognition system. The
grammar can incorporate much of the semantics of the
sentence needed by our animation component. We use
this latter approach.

SpeechBuilder is a development tool that allows de-
velopers to build their own speech-based applications
without delving into human language technology (HLT)
[14]. SpeechBuilder asks developers to define necessary
semantic concepts by defining actions and keys to cre-
ate a domain. Developers can do this either by using
SpeechBuilder’s web interface or by uploading an XML
file and generating domain files based on it. We choose
to do the latter to allow frequent changes to the XML
file. SpeechBuilder uses an example-based method to
allow developers to lay out the specifics of the domain
[15]. One needs to provide example sentences for actions
along with examples for keys. The tables in Figure
3, taken from the SLS group website, show example
keys and actions. In our case, actions would consist of
create, delete, move, etc. Keys would consist of object,
object name, etc.

SpeechBuilder provides developers with several ways
to write applications, but we make use of the “FrameRe-
lay” approach. That is, the output of the speech recogni-
tion component can be relayed to some other component,
in our case the Flash subsystem. The processed data is

a record of the operators (actions) and operands (keys)
that are part of the sentence in the grammar that most
closely matches what the user said.

The goal of speech recognition is to find the sentence
in the grammar that most closely matches the sentence
uttered by the speaker. The set of spoken sentences
is much larger than the grammar. The actual spoken
sentence is not so important. All that is needed is
sufficient information to carry out an operation in the
animation domain. It is not important if the user says
“Can you please name the dog Fido,” “The dog’s name
is Fido,” or even “Call it Fido.” What is important is
to apply the operation “Name-It” to the explicit operand
“Fido” and the implicit operand “active dog.”

The basic speech recognition steps are as follows.
The audio stream is first divided into sentences. A
sentence is delineated by a long period of silence. The
sentence is then divided into a set of possible phoneme
decompositions. This decomposition is ambiguous and
there are usually several possible decompositions. Each
decomposition is given a ranking based on how closely
the audio wave corresponds to the phonemes. Each of
the top � choices are then converted to a sequence of
words. Some of the phoneme decompositions can be
ruled out at this phase. The words are then analyzed
to see if they form a somewhat grammatical sentence
by a natural language parser. Finally, the top choices
are ranked based on how likely they match a sentence
in the grammar. Each sentence in the grammar has an
associated XML description that selects the operators
and operands in the sentence. So, the final output is a
set of XML descriptions each with a given score. There
are times that a non-top ranked score is more likely to
be correct.

The structure of the XML file describing the gram-
mar is straightforward. There are actions and there are
operands. For the most part the operands are either the
objects or a location. An object is either a file name,
a stage name, or absolute stage location. Instantiated
objects are also location specifiers since each instantiated
object has an associated location. Objects can also be
the subject of a sentence, as in “Fido, fetch the bone.”
Both “Fido” and “bone” are objects. Actions either move
or play an animation. “Fetch” is an animation and a
move. It requires the playing of the fetch movie clip.
The destination of the move is at the location of the
bone.

The XML description of the command is passed to
the animation system to carry out the operation. Some
operations may not be relevant in the current state of the
animations. For example, there may be no dog on the
stage. The top several choices are examined in sequence
to find one that matches. If none match, then some

negative acknowledgment is sent back to the user.
The speech domain is automatically generated by the

system. Except for the stage names, all information is
gathered from the clip files. The object file names form
the set of valid objects and the action file names form the
set of valid operators. Each domain also contains a set
of basic sentences for creating, destroying, and applying
other basic operations. The database of previous stage
names is also used to define a set of objects. Finally, a
set of well known stage names are also included in the
domain.

What is missing from the domain are new, never
seen before stage names. We propose to augment the
system with the potential for the user to train the system.
Unfortunately, with the way recognition works, it is not
possible for the system to say that there is a word in the
sentence that is a new stage name. The system will either
ignore the new word or try to map it to an existing word
in the domain. When such mistakes happen, it would be
useful to have the user augment the domain.

V. PUTTING IT ALL TOGETHER

Given a directory with movie clips in the correct
format and naming convention, the application is auto-
matically compiled. The objects and actions are collected
with the files in the directory. This information is used to
build the speech domain and the animation domain. The
speech domain has a set of defaults and alternate ways of
saying the basic actions such as create and destroy. For
example, “Make a penguin” or “I want a new penguin”
will both create a penguin.

A. Generating Speech Domain Files

The smart object naming scheme, keys and actions are
used to generate speech domain files. The GALAXY
framework, the architecture for dialogue systems used
by SpeechBuilder, utilizes speech domain files to un-
derstand user input and produce desired output. Domain
files are generated based on an XML file that contains
all the necessary information to create a speech domain
– keys and actions. The XML file is easily generated
using the object naming scheme.

A text file is created that specifies the names of the
movie clips created for all objects. Only one file is
needed for all objects. A sample text file would read:

Begin Penguin
Penguin.bow
Penguin.dance
Penguin.eat_ice_cream
Penguin.hop

End Penguin

If one wants to add more objects, he can add them
right after the Penguin movie clips. There are three

Action Examples
Identify What is the forecast for Boston

What will the temperature be on Tuesday
I would like to know today s weather in Denver

Set Turn the radio on in the kitchen please
Can you please turn off the dining room lights
Turn on the TV in the living room

Good bye Good bye
Thank you very much good bye
See you later

Actions Keys
Identify Atlanta, Boston, Baltimore, ...
Set temperature, weather, ...
Goodbye Monday, Tuesday, ...

Fig. 3. Examples of “actions” in SpeechBuilder knowledge representation (left table) and of actions and keys (right table).

simple rules in writing the text file. We need to place
one movie clip per line. The default movie clips does
not need to be listed. All the movie clips for an object
need to be grouped together, begin with “Begin Object”
end with “End Object.” For example, “Dog.bark” can
not appear in the middle of the Penguin movie clips. It
needs to appear somewhere between “Begin Dog” and
“End Dog.”

Because of the intuitive naming scheme, the XML file
can be easily generated based on the text file. The XML
file is grouped into a number of blocks. The header of
each block is generated based on actions and keys. The
text file is used to fill in the values of keys and generate
example sentences for actions. For example, task is a key
and consists of tasks objects can perform. The XML file
would contain the following lines for task:

<class type="Key" name="task">
<entry>bow</entry>
<entry>dance</entry>
<entry>eat_ice_cream</entry>
<entry>hop</entry>

</class>

For an action, entries would consist of example sen-
tences. For the action create, the following lines
would be generated:

<class type="Action" name="create">
<entry>create a penguin</entry>
<entry>make a penguin</entry>

</class>

It is important to note that the above segment not only
specifies two different ways of invoking create but
also indicates that it can be applied to all objects. In
other words, using one member of the key in an example
sentence is sufficient to indicate that the action applies
to all members of the key. Here’s another example:

<class type="Action" name="perform">
<entry>make Bob dance</entry>

</class>

Here, “dance” is a member of the key “task.” There-
fore, the entry above indicates that users can say, “make
Bob bow,” “make Bob eat ice cream,” and “make Bob
hop.” As a result, the XML file generated is a concise
yet easy-to-understand representation of our speech do-
main. In addition, if one wants add or modify speech
commands for an action, he is welcomed to modify
the relevant block of the XML file. For instance, the
following block is generated for the action delete:

<class type="Action" name="delete">
<entry>delete Bob</entry>

</class>

One can easily add another entry to the block:

<class type="Action" name="delete">
<entry>delete Bob</entry>
<entry>pop Bob</entry>

</class>

Next the system must generate domain files. To review,
domain files are a collection of files that the Galaxy
framework uses to understand and process speech input
from the user.

B. Voice input relayed to Flash

FrameRelay, an application written in Java, is used to
relay data from SpeechBuilder to Flash. Once the sound
input has been parsed by SpeechBuilder, FrameRelay
processes this output, extracts the relevant information
(i.e. action and subject), builds the appropriate XML
node, and sends this to Flash. Using ActionScript, Flash
then takes this XML node and executes the command
requested. The corresponding visual effect is displayed
on screen.

C. Creating the background

In the early stages of development, we provided a
ready-to-use background for end-users. This was ob-
viously not a good choice for most users would like
to create their own background. We still provide the
default background; however, we also give the user an

environment to create a background. The background not
only sets the look and feel of animation but more impor-
tantly contains all the background locations. Although
there is no distinction between background objects and
characters, they are used in different ways. Objects that
are part of the background can be individually referenced
but cannot be individually moved. Moreover, there are
differences between composite objects that are used as
characters and those that are used as background. Further
experimentation is needed to fully understand the differ-
ent constraints. For example, the order of objects is very
important in the background, so that the tree is in front
of the house but behind the car. This ordering is always
important but seems to be a major preoccupation when
building the background. Consequently, additional primi-
tive operations may need to be added. In addition, the set
of primitive building blocks differs for the background
and foreground. It might be helpful to have different
libraries for each. When the background is finished being
created, the user can “freeze” the background and need
not give it a name. Freezing signals that the user is
finished with creating the background.

D. Animating characters

Animating characters is not too different from creating
the background. Characters are born out of the same set
of objects from which background objects are created.
Any object added after the freeze command is considered
a character. One can create, name, and delete charac-
ters the same way he would with background objects.
However, one needs to use a different approach to move
characters around. Moving a character to a grid point
as done with background objects is neither interesting
nor meaningful. More importantly, this approach is not
practical when the user is trying to produce animation
in real time. We have decided that one good approach
would be to move a character from one background
object to another. This approach reduces the number
of commands the user has to speak, thereby resulting
in more continuous animation. Furthermore it gives the
user full control over characters’ actions since he is
responsible for placing the background objects.

In addition to moving, characters are capable of per-
forming tasks. When we made objects, we assigned a
number of tasks to each object. Tasks are designed to
give the user freedom to create more interesting and
content-rich animation. One can think of tasks as clip
arts for animation only less annoying and more dynamic.
For example, Penguin can bow, dance, eat ice cream, and
hop. Novices would have to spend a great deal of time
and effort if they were to create these effects themselves.
We diligently provide objects for novices to create fun
and useful animation so that they do not have to delve
into the details of cartoon making. Ambitious novices

and experts need not worry. They can always choose
not to use already provided objects and instead create
their own objects as long as they adhere to the naming
scheme.

VI. CONCLUSION

We’ve created a multi-modal animation control system
that lets users create and control animation in real time.
Users can design the background and animate charac-
ters using the speech interface developed with Speech-
Builder. Users need not learn the specialized animation
terms and techniques that other systems require them to
master. It is important to note, however, that the user
has an option to create their own objects and speech
commands if he so desires. This is to accommodate
both novices and experts. More importantly, animation
happens before their eyes as they speak to the system.
Although we have not conducted formal user studies,
informal user sessions have shown that users learn to
use our system in a matter of minutes, use the speech
commands with ease, and most importantly, enjoy using
our system to a great extent.

The speech enabled animation system poses many
challenges while providing a human-centric approach
to controlling an animation system. The system itself
is a system of systems, with the speech recognition
system running on a dedicated Linux computer, the Flash
animation system on a Windows computer, and the audio
capture running on a handheld iPaq computer.

Speech recognition is somewhere between 80 to 90
percent accurate. In other-words, there are lots of mis-
takes. We have begun to address ways in which we
can limit the errors. First, all the recognized operations
contain scores, and so the system can choose to require
high confidence scores for serious operations, such as
“terminate,” and lower confidence scores for operations
that can easily be undone. Second, it is possible, in
fact sometimes desirable to allow some mistakes to
go through without requiring the user to re-speak the
command. The idea of turning a weakness into a feature
is intriguing. Consider Figure 2. Suppose the system
thought one asked for the cat to dance. There is no
movie clip associated with a cat dancing. Rather than
an outright rejection, commanimation does the fol-
lowing search. If there is another active object on the
stage that can dance, then that object will dance. If
there are no such objects but there is an active cat,
then the cat will perform a random actions. Similarly,
if the cat is commanded to run to the bone and there
is no bone on the stage, then some other object, with
a lower recognition score, is chosen as a destination.
Finally, rather than telling the user that the system does
not understand the command, a random active object is

Fig. 4. The user say “Create a penguin.” and then “Name it Bob.” A penguin is created in front of the existing objects. The next command
is “Bob, go to the pizza.” which causes the penguin to move from its current position to the pizza. The “go to” movie clip shows rocket fire
propelling Bob.

chosen and one of its actions is performed at random.
This is where a standard reverse or undo primitive would
come in handy.

Our system turns out to be very engaging and plain
old fun. We must admit that in our prototype we have
deliberately designed the objects and the tasks to be
interesting and somewhat humorous to capture the user’s
attention. When the penguin character became noticeably
chubbier after eating an ice cream, most users kept
making him eat more ice cream to observe the poor pen-
guin’s dramatic increase in size. Most of the test users,
mostly graduate students and undergraduate students at
Laboratory for Computer Science, exhibited childlike
enthusiasm when creating and controlling animation with
our system. This is not to say that our system is only
designed for light weight, just for fun applications. In
fact, a number of practical applications, ranging from
PowerPoint presentations to simulations, can be built
upon our framework. We interpret the users’ enthusiasm
and enjoyment as our success in creating something
novel and engaging. More importantly, with the test
users’ encouragement, we are now in a position to make
improvements to the system as well as build applications
on top of it.

REFERENCES

[1] Larry Rudolph, ORG-Oxygen Research Group. Laboratory for
Computer Science Annual Report 2001

[2] Kristin R. Thrisson. Toonface: A System for Creating and Ani-
mating Interactive Cartoon Faces. Learning and Common Sense
Section Technical Report 96-01. April 1996

[3] Daniel Gray, John Kuramoto, and Gary Leib. The Art of Cartoon-
ing with Flash

[4] ACM SIGGRAPH. http://www.siggraph.org/
[5] Kristinn R. Thrisson. A Mind Model for Multimodal Commu-

nicative Creatures and Humanoides. Internal Journal of Applied
Artificial Intelligence 449-486. 1999

[6] Michael H. Coen. Design Principles for Intelligent Environments.
Proceedings of the Fifteenth National Conference on Artificial
Intelligence. (AAAI’98). 1998

[7] Michael H. Coen. The Future of Human-Computer Interaction or
How I learned to stop sorrying and love My Intelligent Room.
IEEE Intelligent Systems. 1999

[8] Matthew Conway, Steve Audia, Tommy Burnette, Dennis Cos-
grove, et al. Alice: Lessons Learned from Building a 3D System
for Novices. Proceedings of Conference on Human Factors in
Computing System. 2000

[9] Matthew Conway. Alice: Rapid Prototyping System for Virtual
Reality

[10] Alice v2.0b. http://www.alice.org
[11] Allen Cypher and David Canfield Smith. KidSim: End User

Programming of Simulations. Proceedings of Conference on
Human Factors in Computing System. 1995

[12] David Canfield Smith, Allen Cypher, and Larry Tesler. Novice
Programming Comes of Age. Communications of the ACM, 43(3),
March 2000, pp. 75-81. 2000

[13] Stage Cast Software, Inc. http://www.stagecast.com
[14] Spoken Language Systems, MIT Laboratory for Computer Sci-

ence. http://www.sls.lcs.mit.edu
[15] Eugene Weinstein. SpeechBuilder: Facilitating Spoken Dialogue

System Development, Master of Engineering Thesis, Massachusetts
Institute of Technology, Department of Electrical Engineering and
Computer Science, May 2001

[16] Ethan Watrall and Norbert Herber. Flash MX Savvy.
[17] Hana Kim Multimodal Animation Control, Master of Engineering

Thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, May 2003.

