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Proteomic analysis of 92 circulating proteins 
and their effects in cardiometabolic diseases
Corinne Carland1†, Grace Png2†, Anders Malarstig3,4, Pik Fang Kho5, Stefan Gustafsson6, Karl Michaelsson7, 
Lars Lind6, Emmanouil Tsafantakis8, Maria Karaleftheri9, George Dedoussis10, Anna Ramisch11, 
Erin Macdonald‑Dunlop12, Lucija Klaric13, Peter K. Joshi12, Yan Chen14, Hanna M. Björck15, Per Eriksson15, 
Julia Carrasco‑Zanini16, Eleanor Wheeler16, Karsten Suhre17, Arthur Gilly2, Eleftheria Zeggini2,18, Ana Viñuela19, 
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Abstract 

Background Human plasma contains a wide variety of circulating proteins. These proteins can be important clinical 
biomarkers in disease and also possible drug targets. Large scale genomics studies of circulating proteins can identify 
genetic variants that lead to relative protein abundance.

Methods We conducted a meta‑analysis on genome‑wide association studies of autosomal chromosomes in 22,997 
individuals of primarily European ancestry across 12 cohorts to identify protein quantitative trait loci (pQTL) for 92 
cardiometabolic associated plasma proteins.

Results We identified 503 (337 cis and 166 trans) conditionally independent pQTLs, including several novel 
variants not reported in the literature. We conducted a sex‑stratified analysis and found that 118 (23.5%) of pQTLs 
demonstrated heterogeneity between sexes. The direction of effect was preserved but there were differences in effect 
size and significance. Additionally, we annotate trans‑pQTLs with nearest genes and report plausible biological 
relationships. Using Mendelian randomization, we identified causal associations for 18 proteins across 19 phenotypes, 
of which 10 have additional genetic colocalization evidence. We highlight proteins associated with a constellation 
of cardiometabolic traits including angiopoietin‑related protein 7 (ANGPTL7) and Semaphorin 3F (SEMA3F).

Conclusion Through large‑scale analysis of protein quantitative trait loci, we provide a comprehensive overview 
of common variants associated with plasma proteins. We highlight possible biological relationships which may serve 
as a basis for further investigation into possible causal roles in cardiometabolic diseases.
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Background
Human plasma contains many circulating proteins that 
are derived from multiple organs and that participate in 
a wide range of biological processes. These proteins may 
be secreted directly into circulation or may spill over into 
the blood from their organs of origin. Clinically, circulat-
ing proteins can be used as biomarkers (e.g. N-terminal 
pro-brain natriuretic peptide in congestive heart failure 
[1]) and also as drug targets (e.g. proprotein convertase 
subtilisin/kexin type 9 serine protease (PCSK9) in hyper-
cholesterolemia [2]). Drug targets with human genet-
ics evidence behind them are twice as likely to lead to 
approved drugs [3], with 66% of FDA-approved drugs 
having prior generated genetics evidence [4]. Further, 
understanding patterns of protein dysregulation in dis-
ease can offer insights into pathophysiology. Cardiometa-
bolic diseases are particularly important to study as they 
represent the leading cause of death globally and con-
tinue to rise in incidence [5, 6].

Genome wide association studies (GWAS) can be used 
to evaluate the genetic underpinnings of protein abun-
dance. Specifically, protein quantitative trait loci (pQTLs) 
are genetic loci that are found to be associated with pro-
tein levels. Recent technological advances have allowed 
for the high throughput quantification of protein levels in 
plasma samples [7]. This development has facilitated sev-
eral large-scale proteomics studies of plasma, which have 
provided insight into the genetic underpinnings of circu-
lating proteins and illuminated potential novel therapeu-
tic targets [8–10].

In this work, we present the results of a genome-wide 
pQTL meta-analysis of 12 European cohorts with meas-
urements of 90 circulating proteins selected for being 
involved in key metabolic processes including cellu-
lar metabolic processes, cell surface receptor signaling 
pathways, regulation of phosphorylation, and cell adhe-
sion. We use colocalization and Mendelian randomiza-
tion (MR) methods to find evidence for potentially causal 
relationships between proteins and diseases. Further, 
we conduct a sex-stratified meta-analysis to shed light 
on differences in the magnitude of genetic associations 
between males and females.

Methods
Protein quantification assay
We used the Proximity Extension Assay (PEA) 
technology [11] to measure 92 proteins on the Olink 
Target Metabolism (Uppsala, Sweden), one of 14 carefully 
designed panels for relative quantification of proteins in 
humans (Additional file  1: Table  S1). The assays in this 
panel were carefully selected to include proteins involved 
in key biological processes such as cellular metabolic 
processes, cell surface receptor signaling pathways, 

regulation of phosphorylation and cell adhesion. The 
PEA technology includes a pair of oligonucleotide-
labeled antibody probes that bind independently to a 
target protein in a sample close enough to allow the two 
oligonucleotides to hybridize. DNA polymerase in PCR 
then amplifies these unique “barcode” DNA which are 
subsequently quantified with qPCR. Olink quantification 
levels below the level of detection were included.

Cohorts
Investigators from 12 primarily European ancestry 
cohorts with both genetic data and protein measure-
ments of the metabolism panel provided data for this 
study. A detailed description of all included cohorts 
including design, inclusion/exclusion criteria, sample 
size, and genetic array used is included in Additional 
file 1: Table S2. Each cohort imputed their genetic array 
data to the 1000 Genomes Project phase 3 reference or 
later or to the Haplotype Reference Consortium (HRC), 
except for the MANOLIS and Pomak cohorts, which 
underwent whole-genome sequencing. Two cohorts 
included only participants from a single sex: males in the 
Uppsala Longitudinal Study of Adult Men (ULSAM) and 
females in the Swedish Mammography Cohort—Clinical 
(SMCC).

Genome‑wide association analysis
Each cohort performed a GWAS on measured circu-
lating protein levels for each protein. Genetic variant 
information was filtered out using the following criteria: 
missing calls > 3%, Hardy Weinberg Equilibrium (HWE) 
P < 5 ×  10–6, minor allele frequency < 0.01. The rela-
tive protein abundances were then rank-based inverse-
normal transformed before the GWAS was performed 
adjusted for age, sex, storage time, plate, and the first 10 
principal components. Additional details of each GWAS 
are provided in Additional file  1: Table  S2. All other 
cohorts with both men and women performed sex strati-
fied analyses in addition to pooled analyses.

GWAS data cleaning and meta‑analysis
GWAS summary statistics for a given protein were 
excluded entirely if greater than 80% of sample measure-
ments were below Olink’s limit of detection (Additional 
file  1: Table  S3). All summary statistics also under-
went quality control using EasyQC [12]. Variants were 
excluded if minor allele count was less than or equal to 
20, imputation quality was less than 0.4, or a variant was 
monomorphic. Sex chromosomes analyses were also 
excluded.

Proteins were included for meta-analysis if there 
were at least three cohorts present after filtering. Meta-
analysis was performed using a random effects model 
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implemented in Genome Wide Association Meta-Analy-
sis (GWAMA version 2.2.2) [13] to account for potential 
heterogeneity of associations across cohorts. Meta-anal-
ysis results were conducted in duplicate at two different 
research centers using two different pipelines and then 
compared to ensure concordance. Study wide signifi-
cance was defined at a Bonferroni corrected value of 
P < 5.6 ×  10–10 (genome wide significance 5 ×  10–8 divided 
by 90 proteins).

Selection of independent variants
We excluded genetic variants present in less than two 
cohorts. We identify independent pQTLs through two 
methods: clumping and conditional analysis. Clumping 
for independent variants was performed with Plink [14] 
through the clump option with parameters -clump-r2 set 
to 0 and -clump-kb set to 500 kB. A subset (n = 11,227) of 
individual level data from the Human Reference Consor-
tium were used as reference [15, 16].

We then conducted conditional-joint analysis in GCTA 
using the -cojo-slct option [17, 18] combined with the 
Haplotype Reference Consortium (HRC release 1.1; 
EGAD00001002729) panel as the LD reference, requiring 
a GWAS P < 5.6e−10 and a COJO conditional P < 5e−5 
for a SNP to be selected. Meta-analysis summary data 
were filtered for MAF > 0.01 and  r2 > 0.05 to minimize the 
probability that additional signals were driven by link-
age disequilibrium (LD) with the primary signal. We also 
explored if all pQTLs or their SNPs in LD  (r2 > 0.3) were 
associated with their eGenes in GTEx v8 database using 
the LDexpress tool [19].

Cis pQTLs were defined as a signal within 0.5  Mb of 
the gene encoding the protein. All other signals were 
defined as trans.

Comparison of pQTLs to prior published data
We compared our pQTL results to the recently released 
summary statistics of the UK Biobank Pharma Proteom-
ics Project (UKB-PPP) which measured 1,463 proteins in 
54,206 participants including all of the proteins on the 
Olink Target Metabolism panel [20]. We examine pQTLs 
overlap of our pQTLs in the UKB-PPP (Additional file 1: 
Table S13a) and also the overlap of the UKB-PPP pQTLs 
in our study (Additional file 1: Table S13b). We found that 
475 out of our 503 pQTLs (94.4%) overlapped with UKB-
PPP. Among the 475 pQTLs, 454 (95.6%) and 462 (97.3%) 
were replicated at P < 1.05e−4 (accounting for 475 pQTLs 
tested) and nominal P < 0.05, respectively. While assess-
ing the replication of UKB-PPP pQTLs in our study, we 
found that 488 pQTLs for 87 Metabolism proteins over-
lapped with our study. Among these 488 pQTLs, 204 
(41.8%) and 388 (79.5%) pQTLs were replicated in our 

study at P < 1.02e−4 (accounting for 488 pQTLs tested) 
and nominal P < 0.05, respectively.

Meta‑analysis of sex stratified GWAS
The 12 cohorts included a total of 10,885 women and 
12,112 men. We conducted two different types of meta-
analyses with the sex stratified GWAS. First, we con-
ducted a meta-analysis analysis, using a random effects 
model implemented in GWAMA. We then conducted a 
second meta-analysis segregating by sex. This resulted 
in male and female specific pQTLs. Second, we used the 
-sex option of the GWAMA software to perform a sex 
stratified meta-analysis and to highlight the heteroge-
neity between sexes [21]. We ran heterogeneity tests of 
all the significant 503 pQTLs detected in the sex strati-
fied GWAS. The heterogeneity significance threshold for 
multiple testing was set to 9.9 ×  10–5 (0.05/503).

Phenotypic and genetic correlation
We calculated pairwise Pearson correlation coefficients 
(r) for all 90 proteins using the R software (version 3.3.2). 
We also applied LD-score regression (LDSC) [22] to esti-
mate the heritability  (h2) of each protein and to quantify 
pair-wise genetic correlations between proteins. For these 
analyses, we used pre-calculated LD scores for Europeans 
in HapMap Phase 3 [23]. The phenotypic and genetic cor-
relation matrices were individually ordered using a hier-
archical clustering approach (Additional file 1: Tables S7 
and S8; Additional file 2: Figures S4 and S5).

Mendelian randomization
Two sample MR was performed to assess potentially 
causal effects of proteins on a wide range of diseases 
(Additional file  1: Table  S4) [24] using the R package 
TwoSampleMR [25]. To identify independent genetic 
instruments with a low probability of pleiotropy for these 
analyses, we filtered all detected pQTLs at linkage dise-
quilibrium (LD)  r2 threshold of 0.01 and removed pQTLs 
in known pleiotropic regions, including those in the 
MHC region, ABO, CFH, and VTN gene coding regions. 
Among remaining SNPs, we created two sets of instru-
ments: (1) cis pQTLs with P < 5 ×  10–8 and (2) cis pQTLs 
with P < 5 ×  10–8 plus trans pQTLs with P < 5.6 ×  10–10. 
While trans instruments may be more prone to pleiot-
ropy, they have value in MR analysis by increasing vari-
ance explained by the tested protein. Additionally, they 
may represent an upstream mechanism of action. For 
single instruments, we generated an instrument variable 
(IV) Wald ratio estimate while summary IV estimates 
for multiple instruments were generated by through 
an inverse variance weighted fixed effect meta-analy-
sis of individual instruments. A Benjamini–Hochberg 
FDR < 0.05, assigned separately in cis pQTLs and cis plus 
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trans pQTLs, was used as a threshold of significance for a 
significant MR result.

Colocalization
For all 18 proteins with a significant protein-disease 
association in the two-sample Mendelian randomiza-
tion analysis, genetic colocalization was carried out 
with 15 selected unique traits of cardiometabolic rel-
evance (Additional file 1: Table S11). Colocalization was 
performed using the coloc.fast function from the gtx R 
package [26]. The method is equivalent to coloc by Giam-
bartolomei et al. [27] and assumes one causal variant at 
each associated locus. To satisfy this assumption at loci 
with more than one independent variant, each inde-
pendent variant was conditioned on all other independ-
ent variants at the locus using the –cojo–cond function 
implemented in GCTA version 1.93.0, using the HRC 
panel (release 1.1; EGAD00001002729) as an LD refer-
ence; each independent variant was tested individu-
ally using the resulting summary statistics as input. We 
define positive colocalization as a posterior probability 4 
(PP4) of more than 80%, as in the original coloc paper. 
We performed additional analysis with all available traits 
in PhenoScanner [28, 29] extracting summary statis-
tics for regions ± 1  Mb of the independent pQTL. Full 
results for colocalization are provided in Additional file 1: 
Table S11.

Results
GWAS meta‑analysis and pQTL discovery
A total of 90 proteins in up to 22,997 individuals from 12 
cohorts passed quality-control criteria and were included 
in the GWAS meta-analysis. The meta-analysis identified 
pQTLs for plasma levels of 77 proteins (Additional 
file  1: Table  S5). We found 178 independent pQTLs at 
a Bonferroni-corrected significance of P < 5.6 ×  10–10. 
After conditional analysis, we found an additional 325 
conditionally independent pQTLs at P < 5.6 ×  10–10. Thus, 
we identified 503 (337 cis and 166 trans) independent 
pQTLs in total (Fig. 1, Additional file 1: Table S5).

Most proteins were associated with five or fewer 
pQTLs, and 18 proteins had greater than 10 condition-
ally-independent pQTLs. Among these 18 proteins, we 
observed substantial variability in the distribution of 
cis- and trans-pQTLs. For example, the T-cell surface 
glycoprotein CD1c (CD1C) has 12 trans- and only one 
cis-pQTL. Eight of its trans-pQTLs are located within 

the human major histocompatibility complex (MHC) 
region (chr6:29691116–33054976); CD1c and MHC mol-
ecules have similar functions in T-cell immune responses 
[30], and our findings point to complex interplay between 
them. Conversely, meprin A subunit beta (MEP1B) has 
22 cis- and only one trans-pQTL, suggesting complex 
local genetic regulation of circulating MEP1B at the 
encoding gene region. Additionally, 27.24% (137/503) 
of all pQTLs or their SNPs in LD  (r2 > 0.3) also demon-
strated associations with their eGenes in GTEx v8 data-
base at P < 1 ×  10–4, providing some evidence that pQTL 
discovery may be a downstream consequence of effects of 
the same genetic variant on gene expression (Additional 
file 1: Table S6).

Sex stratified meta‑analysis
We identified 258 pQTLs among men (at P < 5 ×  10–8; 
130 at a Bonferroni-corrected significance threshold 
of P < 5.6 ×  10–10) and 552 pQTLs among women (at 
P < 5 ×  10–8; 399 at P < 5.6 ×  10–10). This sex-stratified 
meta-analysis confirmed a concordance in the direction 
of effects between males and females for all 503 pQTLs 
discovered in the pooled meta-analysis (Fig.  2). All 
independent pQTLs from the pooled meta-analysis were 
tested for sex specific heterogeneity (Additional file  1: 
Table  S14). Using a significance threshold corrected 
for multiple testing (P < 9.9 ×  10–5), 118 (23.5%) pQTLs 
demonstrated heterogeneity between sexes. Of these, 
97 (82.2%) pQTLs had greater absolute beta values 
in females, versus 21 (17.8%) in males; one cis-pQTL 
for adenosylhomocysteinase (AHCY; rs34563588) 
in particular, was significant only in males. Sex 
heterogeneity was most significant for a cathepsin H 
(CTSH)-increasing pQTL (rs77362013; P = 1.35 ×  10–220; 
 betamale = 0.616;  betafemale = 0.685).

The heterogeneity drove differences in signal 
detection between males and females for some proteins. 
For example, for CDHR5, females have significant 
associations in chromosomes 1 (rs12134610, trans), 11 
(rs117818025, cis), and 17 (rs1801689, trans); while males 
only have a significant association in chromosome 11 
(rs12804878, cis). Similarly, we detect two loci in females 
for angiopoietin 2 (ANGPT2): one in chromosome 8 
(rs13264652, cis) and one in chromosome 9 (rs9411492, 
trans). We observe replication in males for the cis-
pQTL, but not the trans-pQTL  (Fig.  3). The trans-
pQTL is strongly associated with ABO expression in 

(See figure on next page.)
Fig. 1 a Distribution of the number of pQTLs per protein. We observe a range of 1–2 pQTLs per protein for 23 proteins and 19 + pQTLs for each 
of two proteins. b Minor allele frequency (MAF) versus absolute value of effect size. As the MAF increases, size of the effect tends to increase. 
c. Distance from variant to transcription start site of protein (TSS) versus negative log P. Variants plotted here include all SNPs on the same 
chromosome as the coding region of the protein. The most statistically significant pQTLs are closest to the TSS. d pQTL position versus location 
of protein coding gene
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the thyroid (GTEx), where ANGPT2 is also highly 
expressed. Differences in thyroid function and prevalence 
of autoimmune thyroid disease between males and 
females [31] could drive this female-specific effect. Four 
additional proteins have significant pQTLs in the sex 
stratified analysis that were attenuated in the combined 
meta-analysis: GRAP2 (rs79376201) and KYAT1 
(rs3750319) in females; and CRKL (rs188792857) and 
SNAP23 (rs150285625 and rs188792857) in males.

Phenotypic and genotypic correlation
We detected overall phenotypic and genotypic corre-
lation across the proteins analyzed (Additional file  1: 
Tables S7 and S8; Additional file  2: Figures  S3 and S4). 
The highest positive phenotypic correlation detected 
was between the synaptosome associated protein 23 
(SNAP23) and the disabled homolog 2 (DAB2) protein 

(r = 0.930). The highest negative phenotypic correlation 
detected was between the amyloid beta precursor like 
protein 1 (APLP1) and the heparin binding growth fac-
tor (HDGF) (r = −  0.377). The highest positive genetic 
correlation detected was between the CXADR-like mem-
brane protein (CLMP) and the FAM3 metabolism regu-
lating signaling molecule C (FAM3C) protein (r = 0.821). 
The highest negative genetic correlation detected was 
between the BAG cochaperone 6 (BAG6) protein and 
the protein phosphatase 1 regulatory inhibitor subunit 2 
(PPP1R2) (r = − 0.336). In general, we observed that high 
genotypic correlation does not always translate to strong 
phenotypic correlation and vice versa (Additional file  1: 
Table S9).

The heritability of the proteins studied was within the 
range of 0 ≤  h2

g ≤ 0.118 (median = 0.053; interquartile 
range = 0.047; Additional file  1: Table  S10), although we 

Fig. 2 pQTL betas in males versus females for pQTLs significant in both sexes
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Fig. 3 a Miami plot for ANGPT2. Two loci are seen for females (chromosomes 8 and 9) but in males, there is only a significant SNP on chromosome 
8. b Miami plot for CDHR5. Females demonstrate significant associations on chromosomes 1, 11, and 17 while males have a significant locus 
on chromosome 11
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note that accurate heritability estimation would require 
larger sample sizes.

Two‑sample Mendelian randomization and colocalization 
analysis
We find causal associations for 18 proteins and a total 
of 19 phenotypes/disease using cis and cis-plus-trans 
instruments (Figs.  4, 5, Table  1). Of the 18 proteins, 

10 have associations using cis-only instruments. Ten 
proteins (ANGPTL7, SEMA3F, ARG1, NTPROBNP, 
NECTIN2, CD79B, RTN4R, ENTPD5, TYMP, NOMO1) 
are associated with more than one outcome (Table 1). We 
note that two-sample MR relies on specific assumptions 
[32] that can lead to false positives when violated; 
to strengthen our findings, we performed additional 
colocalization analysis for the 18 proteins and their 

Fig. 4 Forest plot of MR results using cis instruments
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associated (and other relevant) traits (Additional file  1: 
Table  S11 and S12). We observe positive colocalization 
[posterior probability (PP) > 80%] for 5 of 18 proteins 
with the same traits (ADGRE2 and total cholesterol [TC]; 
ANGPTL7 and BMI, waist-hip ratio; ITGB7 and TC; 
NOMO1 and LDL, TC; SEMA3F and BMI, alcohol use), 
supporting the two-sample MR results.

Semaphorin 3F (SEMA3F) and angiopoietin-related 
protein 7 (ANGPTL7) are associated with the most traits, 

at six and five associations, respectively. Specifically, 
increasing levels of SEMA3F is associated with lower 
alcohol use disorder, problematic alcohol use, body mass 
index (BMI) and with greater waist hip ratios, inflam-
matory bowel disease, and type 2 diabetes. Increasing 
levels of ANGPTL7 is associated with a lower age of 
menopause, BMI, and high-density lipoprotein (HDL); 
and greater type 2 diabetes and waist hip ratios (Table 1; 
Figs. 4 and 5).

Fig. 5 Forest plot of MR results using both cis and trans instruments. IVW inverse variance weighted
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Discussion
Principal findings
In this analysis, we conduct a genome wide association 
meta-analysis of 90 circulating proteins in up to 22,997 
European individuals. Our principal findings are four-
fold: (1) After multiple-testing correction (alpha = 0.05), 
we identify a total of 503 independent pQTLs for 77 
proteins; (2) We detect phenotypic and genotypic 

correlation across the proteins tested; (3) We conduct a 
sex-stratified analysis that reveals concordance in effect 
direction between sexes but with some heterogeneity; 
(4) We annotate trans-pQTLs with nearest genes and 
report plausible biological relationships and (5) Using 
a two-sample MR approach, we find support for causal 
associations for a total of 18 proteins, of which 10 are 
supported by genetic colocalization.

Table 1 MR associations

Each protein and the significant associations through Mendelian randomization. Up arrow indicates that an increased amount of the protein is associated with an 
increased or higher value of the outcome (e.g. increasing ANGPTL7 is associated with a decreased BMI). All instruments are cis except for those associations indicated 
by bold font

BMI body mass index, HDL high density lipoprotein, LDL low density lipoprotein, VTE venous thrombus embolism, WHR waist hip ratio

Protein Function Association

ANGPTL7 Angiopoietin‑related protein 7: formation and organization of extra‑
cellular matrix. Negative regulator of angiogenesis in cornea. Plays 
role in maintaining corneal avascularity and transparency

↓Age at menopause, ↓BMI, ↓HDL, ↑Type II diabetes, ↑WHR

SEMA3F Semaphorin‑3F: involved in cell signaling ↓Alcohol use disorder, ↓BMI, ↓Problematic alcohol use, ↑WHR, 
↑Inflammatory bowel disease, ↑Type II diabetes

ARG1 Arginase‑1: enzyme in urea cycle converting L‑arginine to urea 
and L‑ornithine

↓BMI, ↑GFR, ↓Type II Diabetes

NTPROBNP Natriuretic peptides B: hormone plays a role in mediating extracel‑
lular fluid volume and cardio‑renal homeostasis

↑BMI, ↑VTE

NECTIN2 Nectin‑2: modulator of T‑cell signaling ↓CAD, ↓LDL, ↓Total cholesterol, ↑HDL
CD79B B‑cell antigen receptor complex‑associated protein beta chain: 

involved in signal cascade activated by B‑cell antigen receptor 
complex

↑HDL, ↑Rheumatoid arthritis, ↑WHR

RTN4R Reticulon‑4 receptor: receptor for several ligands ↓Pulse pressure, ↓Systolic blood pressure

DDC Aromatic‑l‑amino‑acid decarboxylase: enzyme that catalyzes 
the conversion of l‑3,4‑dihydroxyphenylalanine (DOPA) to dopamine, 
l‑5‑hydroxytryptophan to serotonin and l‑tryptophan to tryptamine

↓Type I diabetes

TYRO3 Tyrosine‑protein kinase receptor: receptor tyrosine kinase that trans‑
duces signal from extracellular matrix to cytoplasm, binds several 
different ligands

↑Type II diabetes

FAM3C Family with sequence similarity 3 member C: possible involvement 
in retinal laminar formation. Promotes epithelial to mesenchymal 
transition

↓WHR

TSHB Thyrotropin subunit beta: subunit of hormone mediating thyroid 
function

↓Atrial fibrillation

ENTPD5 Ectonucleoside triphosphate diphosphohydrolase 5: a Uridine 
diphosphatase involved in protein N‑glycosylation and ATP regula‑
tion

↓Type 1 diabetes, ↑Inflammatory bowel disease

CD1C T‑cell surface glycoprotein CD1c: protein presents to antigens 
to T‑cell receptors on natural killer T‑cells

↑Inflammatory bowel disease

TYMP Thymidine phosphorylase: catalyzes the reversible phosphorolysis 
of thymidine

↑Inflammatory bowel disease, ↑Total cholesterol, ↓Prostate 
cancer

ITGB7 Integrin beta‑7: adhesion molecule that mediates lymphocyte migra‑
tion and homing to gut‑associated lymphoid tissue

↓Total cholesterol

NOMO1 Nodal modulator 1: involved in membrane protein transport 
into the endoplasmic reticulum

↑LDL, ↑Total cholesterol

ADGRE2 Adhesion G protein‑coupled receptor E2: cell surface receptor, 
promotes cell attachment, granulocyte chemotaxis, degranulation, 
and adhesion

↓Total cholesterol

COMT Catechol O‑methyltransferase: enzyme that catalyzes the O‑methyl‑
ation, and thereby the inactivation, of catecholamine neurotransmit‑
ters and catechol hormones

↓Type II diabetes
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MR results and comparison with prior literature
Our MR results suggest several associations between 
protein and disease. We find increasing levels of SEMA3F 
associated with decreasing risk of alcohol use disorder 
and problematic alcohol use and increased waist-to-hip 
ratio. Increasing levels of SEMA3F is also associated with 
increased risk of inflammatory bowel disease and type 2 
diabetes through trans instruments. In agreement with 
our findings, a previous GWAS found an association with 
a locus at a different class of semaphorin, SEMA3A, to be 
associated with decreased risk of alcohol dependence and 
major depression in African Americans [33]. The sema-
phorins are a set of secreted and membrane proteins that 
play an important role in axon development and neu-
ronal connectivity [34].

We find that increased levels of angiopoietin-related 
protein 7 (ANGPTL7) are associated with decreased age 
at menopause, decreased HDL, increased risk for type 2 
diabetes, and increased waist to hip ratio (corrected for 
BMI). This is supported by genetic colocalization of the 
cis pQTL with signals for BMI (PP4 = 91.9%) and waist to 
hip ratio (PP4 = 92.1%); and colocalization between two 
non-pleiotropic trans pQTLs for ANGPTL7 (rs10893498 
and rs535064984) and signals for low-density lipoprotein 
(LDL) levels  (PP4rs10893498 = 97.6%;  PP4rs535064984 = 99.9%). 
In general, our results suggest that increased ANGPTL7 
is associated with increasing risk of metabolic syndrome, 
with the exception of BMI, where increased ANGPTL7 
is associated with decreased BMI. While our MR results 
suggest that increased protein levels are associated with 
decreased BMI, one small observational study finds the 
opposite result, where ANGPTL7 is increased in subjects 
with obesity [35]. Interrogation of the GWAS Catalog 
finds that there is an association between SNPs mapped 
to the ANGPTL7 gene and both BMI and intraocular 
pressure [36].

Additionally, we find an association of RTN4R with sys-
tolic blood pressure and pulse pressure. RTN4R, or retic-
ulon-4 receptor, is a receptor subunit for RTN4 which is 
known for being a myelin-associated inhibitor of axon 
regeneration [37]. This association has not been previ-
ously reported and may suggest some vascular effects of 
this protein that are not yet understood. Replication of 
this finding in additional cohorts would be an important 
next step.

Finally, we replicate several clinically known associa-
tions. We highlight a protective role of increased levels 
of thyroid stimulating hormone subunit beta (TSHB) 
against atrial fibrillation. TSHB is released by the pitui-
tary gland to stimulate thyroid production of triiodo-
thyronine (T3) and thyroxine (T4). Generally, high TSH 
levels are an indication of low concentrations of thy-
roid hormones, or hypothyroidism. Correspondingly, 

we observe colocalization of a known trans pQTL 
for TSHB (rs7695810; MAF = 0.181; beta = −  0.105; 
SE = 0.012; P = 3.89 ×  10–18) with signals for self-
reported hypothyroidism (PP4 = 92.6%) and treatment 
for hypothyroidism (91%) [38]. Since the opposite 
condition, hyperthyroidism, is a known cause of atrial 
fibrillation [39], it is consistent that increased levels of 
TSHB would be inversely associated with the arryth-
mia. Furthermore, we identify several associations of 
autoimmune diseases with proteins in the immune 
pathway including inflammatory bowel disease with 
T-cell surface glycoprotein (CD1C) and rheumatoid 
arthritis with B-cell antigen receptor complex-associ-
ated protein beta chain (CD79B).

Trans pQTL nearest gene annotation
The protein trans-pQTLs were annotated with informa-
tion on nearest genes (Additional file 1: Table S12). Pre-
vious work has suggested that the gene nearest the lead 
variant is often the causal gene, although not always 
[40]. The Olink protein and the nearest gene for each 
trans-pQTL were text-mined to gain insights into poten-
tial connections between the gene and the protein. A 
trans-pQTL for plasma ghrelin (GHRL), rs2894342, is 
located ~ 2000 base pairs upstream of the MLN gene. 
MLN encodes motilin, which is expressed in the gastro-
intestinal tract and in the brain, and regulates interdiges-
tive contractile activity of the gastrointestinal tract. The 
observed trans-pQTL for ghrelin suggests that genetic 
regulation of motilin directly influences plasma ghre-
lin concentrations, providing new evidence of direc-
tional regulation of these digestive proteins. Another 
protein measured in our study, neuronal pentraxin 2 
receptor (NPTXR), was associated with a trans-pQTL 
located ~ 20 kb downstream of NPTX2, which encodes a 
ligand for the neuronal pentraxin 2 receptor. Both pro-
teins are enriched for expression in the cerebral cortex 
[41] but our data suggest that the signaling pathway is 
likely to be active also in the circulation.

For plasma ANGPTL7, we observed 3 trans-pQTLs 
located near MRC1, ST3GAL4, and ASGR2. MRC1 
encodes the mannose receptor C-type 1, which is 
expressed in the lung and on Kupffer cells in the liver, 
where it mediates endocytosis of glycoproteins [41]; 
ASGR2 is also involved in endocytosis of plasma glyco-
proteins, specifically those in which the terminal sialic 
acid residue on their carbohydrate moieties has been 
removed; and ST3GAL4 is an enzyme catalyzing terminal 
sialylation of glycoproteins. Experimental validation will 
be needed to determine if ANGPTL7—which is a 45 kDa 
glycoprotein—is directly modulated by these respective 
post-translational actions.
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Sex‑specific meta‑analysis
We identify pQTLs both in pooled and sex-stratified 
cohorts. A heterogeneity analysis reveals that there was 
full concordance of the direction of effects of all reported 
pQTLs from the pooled meta-analysis; however, 23.5% 
of pQTLs demonstrated heterogeneity between sexes. 
Interestingly, a large majority of these pQTLs had greater 
effect sizes in females compared to males. The reason 
behind this is unclear, but one possibility is that this 
could be an effect of higher prevalence of cardiometa-
bolic medication in males versus females [42], which may 
affect protein levels. A similar trend has been observed 
in a GWAS of body fat distribution, where the authors 
find a high degree of sex-heterogeneity, with almost 95% 
of the implicated variants exhibiting larger effects in 
females [43]. Other GWAS have found evidence for sex-
specific associations in abdominal and visceral fat [44], 
renal cell carcinoma [45] and longevity [46]. Literature in 
heterogeneity between sexes and sex-specific differences 
in pQTLs are limited [47].

Conclusions
The main strength of our analysis lies in the large sam-
ple sizes comprising multiple cohorts, which maximizes 
power to detect even lower-frequency variants of smaller 
effect sizes. We also present causal associations between 
protein and disease that are based on multiple infer-
ence method approaches, such as MR and colocalization 
analyses.

However, there are several limitations to our work. 
Firstly, the proteins tested were limited to those detect-
able in blood and available on Olink’s Metabolism panel. 
This means that detected pQTLs are not representative 
of all cell types or tissues, which limits interpretation of 
their biological roles. Secondly, MR associations may 
be confounded by pleiotropic genetic instruments and 
reverse causality [48]. To address and/or minimize the 
former, we excluded all pQTLs located in known pleio-
tropic regions (Methods) and performed additional MR 
analyses using only cis instruments (Fig. 4), although we 
note that this does not completely eliminate confound-
ing. Thirdly, the participants included in the genetic anal-
yses were of European ancestry only; hence, our results 
may not be generalizable to other ethnic groups.

Through a large-scale pQTL analysis, we provide 
a comprehensive overview of the low-frequency to 
common variant architecture of 90 proteins in the 
blood and describe their heritability and sex-specific 
differences. These serve as a starting point for further 
inquiry into possible causal roles in complex diseases 

that may complement case–control studies of proteomic 
biomarkers and other drug target validation efforts. 
Importantly, all results should be substantiated by 
orthogonal validation. Further future directions include 
rare variant analysis [49] and cell type and tissue-
specific analysis, which will provide a more complete 
picture of the complex genetic architecture underlying 
proteins, allowing us to harness the full potential of 
pQTLs.
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