173 research outputs found

    Several dystrophin-glycoprotein complex members are present in crude surface membranes but they are sodium dodecyl sulphate invisible in KCl-washed microsomes from mdx mouse muscle.

    No full text
    International audienceThe dystrophin-glycoprotein complex (DGC) is a large trans-sarcolemmal complex that provides a linkage between the subsarcolemmal cytoskeleton and the extracellular matrix. In skeletal muscle, it consists of the dystroglycan, sarcoglycan and cytoplasmic complexes, with dystrophin forming the core protein. The DGC has been described as being absent or greatly reduced in dystrophin-deficient muscles, and this lack is considered to be involved in the dystrophic phenotype. Such a decrease in the DGC content was observed in dystrophin-deficient muscle from humans with muscular dystrophy and in mice with X-linked muscular dystrophy (mdx mice). These deficits were observed in total muscle homogenates and in partially membrane-purified muscle fractions, the so-called KCl-washed microsomes. Here, we report that most of the proteins of the DGC are actually present at normal levels in the mdx mouse muscle plasma membrane. The proteins are detected in dystrophic animal muscles when the immunoblot assay is performed with crude surface membrane fractions instead of the usually employed KCl-washed microsomes. We propose that these proteins form SDS-insoluble membrane complexes when dystrophin is absent

    Efficacy of epicutaneous immunotherapy (EPIT) in a new model of peanut-induced eosinophilic esophagitis (EoE) and allergic enterpathy (AE)

    Get PDF
    Background Eosinophilia is often linked to allergic gastrointestinal disorders linked to food allergy. EPIT using Viaskin® device has been described as a therapeutic method in food allergy. We developed a model of mice sensitized to peanut, exhibiting EoE and AE after exclusive feeding with peanut protein extracts (PPE). This study was conducted in order to evaluate the efficacy of EPIT. Methods After oral sensitization with PPE and cholera toxin, 30 BALB/c mice were treated weekly during 8 weeks by PPE skin applications (EPIT), 20 mice were not treated (Sham) and 10 mice constituted the control group (C). Mice were then exclusively fed with PPE. Specific IgE, IgG1 and IgG2a were monitored during immunotherapy. Esophageal and jejunal samples were taken for histological analyses. Results sIgE increased after oral sensitization, respectively 0.207 ±0.03 and 0.214±0.04 μg/ml, in EPIT and Sham, with undetectable values in C. Following EPIT, sIgE decreased and sIgG2a increased, respectively 0.139±0.01 vs 0.166±0.01 μg/ml (EPIT vs Sham, p<0.05) and 14.96 ±0.60 vs 4.73±1.75 μg/ml (p<0.05). Esophageal eosinophilic infiltration (measured in 6 high power fields) was higher in Sham, 136±32, than in EPIT, 50±12 (p<0.05) and C, 7±3 cells/mm2 (p<0.01). Esophagus mucosa thickness was increased in Sham compared to EPIT and C (p<0.001). Sham group exhibited higher mRNA levels of cytokines than EPIT: eotaxin (p<0.05), IL-5 (p<0.05), IL-13 (p<0.05). The mRNA levels of these cytokines in EPIT were similar to C. The expression of Foxp3 mRNA increased significantky after EPIT compared with Sham and C (p<0.05). The jejunal villus/crypt ratio was lower in Sham than in EPIT and C, respectively 1.6 ±0.1 vs 2.3±0.2 (p<0.01) and 2.4±0.1 (p<0.001). Eosinophilic infiltration in jejunum was increased in Sham compared to EPIT (p<0.01) and C (p<0.001). Conclusion EPIT is effective in preventing EoE and AE induced by oral challenge in mice sensitized to peanut

    Spring phenology shapes the spatial foraging behavior of Antarctic petrels

    Get PDF
    In polar seas, the seasonal melting of ice triggers the development of an open-water ecosystem characterized by short-lived algal blooms, the grazing and development of zooplankton, and the influx of avian and mammalian predators. Spatial heterogeneity in the timing of ice melt generates temporal variability in the development of these events across the habitat, offering a natural framework to assess how foraging marine predators respond to the spring phenology. We combined 4 yr of tracking data of Antarctic petrels Thalassoica antarctica with synoptic remote-sensing data on sea ice and chlorophyll a to test how the development of melting ice and primary production drive Antarctic petrel foraging. Cross-correlation analyses of first-passage time revealed that Antarctic petrels utilized foraging areas with a spatial scale of 300 km. These areas changed position or disappeared within 10 to 30 d and showed no spatial consistency among years. Generalized additive model (GAM) analyses suggested that the presence of foraging areas was related to the time since ice melt. Antarctic petrels concentrated their search effort in melting areas and in areas that had reached an age of 50 to 60 d from the date of ice melt. We found no significant relationship between search effort and chlorophyll a concentration. We suggest that these foraging patterns were related to the vertical distribution and profitability of the main prey, the Antarctic krill Euphausia superba. Our study demonstrates that the annual ice melt in the Southern Ocean shapes the development of a highly patchy and elusive food web, underscoring the importance of flexible foraging strategies among top predators

    Epicutaneous Immunotherapy (EPIT) Blocks the Allergic Esophago-Gastro-Enteropathy Induced by Sustained Oral Exposure to Peanuts in Sensitized Mice

    Get PDF
    Background: Food allergy may affect the gastrointestinal tract and eosinophilia is often associated with allergic gastrointestinal disorders. Allergy to peanuts is a life-threatening condition and effective and safe treatments still need to be developed. The present study aimed to evaluate the effects of sustained oral exposure to peanuts on the esophageal and jejunal mucosa in sensitized mice. We also evaluated the effects of desensitization with epicutaneous immunotherapy (EPIT) on these processes. Methods: Mice were sensitized by gavages with whole peanut protein extract (PPE) given with cholera toxin. Sensitized mice were subsequently exposed to peanuts via a specific regimen and were then analysed for eosinophilia in the esophagus and gut. We also assessed mRNA expression in the esophagus, antibody levels, and peripheral T-cell response. The effects of EPIT were tested when intercalated with sensitization and sustained oral peanut exposure. Results: Sustained oral exposure to peanuts in sensitized mice led to severe esophageal eosinophilia and intestinal villus sub-atrophia, i.e. significantly increased influx of eosinophils into the esophageal mucosa (136 eosinophils/mm2) and reduced villus/crypt ratios (1.660.15). In the sera, specific IgE levels significantly increased as did secretion of Th2 cytokines by peanut-reactivated splenocytes. EPIT of sensitized mice significantly reduced Th2 immunological response (IgE response and splenocyte secretion of Th2 cytokines) as well as esophageal eosinophilia (50 eosinophils/mm2, p,0.05), mRNA expression of Th2 cytokines in tissue - eotaxin (p,0.05), IL-5 (p,0.05), and IL-13 (p,0.05) -, GATA-3 (p,0.05), and intestinal villus sub-atrophia (2.360.15). EPIT also increased specific IgG2a (p,0.05) and mRNA expression of Foxp3 (p,0.05) in the esophageal mucosa. Conclusions: Gastro-intestinal lesions induced by sustained oral exposure in sensitized mice are efficaciously treated by allergen specific EPIT

    Gait characterization in golden retriever muscular dystrophy dogs using linear discriminant analysis

    Get PDF
    Background: Accelerometric analysis of gait abnormalities in golden retriever muscular dystrophy (GRMD) dogs isof limited sensitivity, and produces highly complex data. The use of discriminant analysis may enable simpler andmore sensitive evaluation of treatment benefits in this important preclinical model.Methods: Accelerometry was performed twice monthly between the ages of 2 and 12 months on 8 healthy and20 GRMD dogs. Seven accelerometric parameters were analysed using linear discriminant analysis (LDA). Manipulationof the dependent and independent variables produced three distinct models. The ability of each model to detect gaitalterations and their pattern change with age was tested using a leave-one-out cross-validation approach.Results: Selecting genotype (healthy or GRMD) as the dependent variable resulted in a model (Model 1) allowing agood discrimination between the gait phenotype of GRMD and healthy dogs. However, this model was not sufficientlyrepresentative of the disease progression. In Model 2, age in months was added as a supplementary dependentvariable (GRMD_2 to GRMD_12 and Healthy_2 to Healthy_9.5), resulting in a high overall misclassification rate (83.2%).To improve accuracy, a third model (Model 3) was created in which age was also included as an explanatory variable.This resulted in an overall misclassification rate lower than 12%. Model 3 was evaluated using blinded data pertainingto 81 healthy and GRMD dogs. In all but one case, the model correctly matched gait phenotype to the actualgenotype. Finally, we used Model 3 to reanalyse data from a previous study regarding the effects ofimmunosuppressive treatments on muscular dystrophy in GRMD dogs. Our model identified significant effect ofimmunosuppressive treatments on gait quality, corroborating the original findings, with the added advantages ofdirect statistical analysis with greater sensitivity and more comprehensible data representation.Conclusions: Gait analysis using LDA allows for improved analysis of accelerometry data by applying adecision-making analysis approach to the evaluation of preclinical treatment benefits in GRMD dogs

    The RPGRIP1-deficient dog, a promising canine model for gene therapy

    Get PDF
    PURPOSE: To evaluate the RPGRIP1-deficient miniature longhaired dachshund (MLHD) dog as a potential candidate for gene therapy. METHODS: Six RPGRIP1-deficient MLHD dogs from our dog colony have been observed for two years using a variety of noninvasive procedures. These included bilateral full-field electroretinograms (ERG) to evaluate retinal function, fundus photographs to evaluate retinal vascularization, and optical coherence tomographs (OCT) to evaluate retinal thickness. We also performed histological examination of hematoxylin- and eosin-stained retinal sections as well as sections labeled in situ by the terminal dUTP nick end labeling (TUNEL) method. RESULTS: ERG findings showed that as early as 2 months of age, cone function was lost while rod function was preserved. However, by 9 months of age, both cone and rod functions could not be detected. Functional visual assessment based on the ability to avoid obstacles showed that vision was retained up to the age of 11 months. Both OCT and histopathology studies revealed a progressive thinning of the outer nuclear layer (ONL) over the first 2 years of age. TUNEL labeling identified apoptotic photoreceptor cell death as the cause of this thinning of the ONL. CONCLUSIONS: A treatment strategy should consist in initiating gene therapy as early as possible after birth to prevent or delay the loss of rod function. In the MLHD, successful subretinal delivery of a therapeutic vector is feasible at 2 months of age and may prevent or delay the loss of rod function

    Cell therapy of Duchenne muscular dystrophy: preclinical trial in GRMD dogs

    Get PDF
    Duchenne muscular dystrophy (DMD), a genetic progressive X-linked muscular dystrophy, is the most common genetic disease in humans. Cell therapy based on the use of somatic stem cells is a very promising approach. In a dog myopathy model, we isolated a muscle stem cell (MuStem) with the essential requirements for therapeutic use: high amplification capacity, ability to fuse with muscle fibers, renewal of the satellite cell population, dispersion in the whole body after vascular administration, persistence of long-term effect, and dramatic clinical improvement of treated animals. These preclinical results pave the way for a therapeutic trial in children with Duchenne muscular dystrophy.La dystrophie musculaire de Duchenne (DMD) est une maladie génétique progressive du muscle liée au chromosome X. Elle est la maladie génétique la plus fréquente chez l'homme. La thérapie cellulaire basée sur l'utilisation de cellules souches somatiques est une voie thérapeutique riche d'intérêt. Nous avons isolé, chez un modèle de chien myopathe, une cellule souche musculaire (MuStem) qui présente les qualités indispensables à une utilisation thérapeutique: forte capacité d'amplification, capacité à fusionner avec les fibres musculaires, renouvellement du contingent de cellules satellites, dispersion dans l'organisme après administration vasculaire, persistance de l'effet à long terme, spectaculaire amélioration clinique des animaux traités. Ces résultats précliniques ouvrent la voie à un essai thérapeutique chez l'enfant atteint de dystrophie musculaire de Duchenne

    Shearwater Foraging in the Southern Ocean: The Roles of Prey Availability and Winds

    Get PDF
    Background Sooty (Puffinus griseus) and short-tailed (P. tenuirostris) shearwaters are abundant seabirds that range widely across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for monitoring and ecosystem conservation and management. Methodology/Principal Findings Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions foraged in the Polar Front zone, and showed particular overlap in the region around 140°E. Short-tailed shearwaters from South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the flight paths taken by the birds on long foraging trips to Antarctic waters. Conclusions/Significance The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and the corresponding localised increases in the productivity of the Polar Front ecosystem

    Reproductive performance and diving behaviour share a common sea-ice concentration optimum in Adélie penguins (Pygoscelis adeliae)

    Get PDF
    This study was financially supported by the following institutions: the WWF-UK through R. Downie, the Japanese Mombukagakusho and the Japanese Society for the Promotion of Science, the Zone Atelier Antarctique et Subantarctique –LTER France of the CNRS.The Southern Ocean is currently experiencing major environmental changes, including in sea‐ice cover. Such changes strongly influence ecosystem structure and functioning and affect the survival and reproduction of predators such as seabirds. These effects are likely mediated by reduced availability of food resources. As such, seabirds are reliable eco‐indicators of environmental conditions in the Antarctic region. Here, based on 9 years of sea‐ice data, we found that the breeding success of Adélie penguins (Pygoscelis adeliae) reaches a peak at intermediate sea‐ice cover (ca. 20%). We further examined the effects of sea‐ice conditions on the foraging activity of penguins, measured at multiple scales from individual dives to foraging trips. Analysis of temporal organisation of dives, including fractal and bout analyses, revealed an increasingly consistent behaviour during years with extensive sea‐ice cover. The relationship between several dive parameters and sea‐ice cover in the foraging area appears to be quadratic. In years of low and high sea‐ice cover, individuals adjusted their diving effort by generally diving deeper, more frequently and by resting at the surface between dives for shorter periods of time than in years with intermediate sea‐ice cover. Our study therefore suggests that sea‐ice cover is likely to affect the reproductive performance of Adélie penguins through its effects on foraging behaviour, as breeding success and most diving parameters share a common optimum. Some years, however, deviated from this general trend, suggesting that other factors (e.g. precipitation during the breeding season) might sometimes become preponderant over the sea‐ice effects on breeding and foraging performance. Our study highlights the value of monitoring fitness parameters and individual behaviour concomitantly over the long‐term to better characterize optimal environmental conditions and potential resilience of wildlife. Such an approach is crucial if we want to anticipate the effects of environmental change on Antarctic penguin populations.PostprintPeer reviewe
    corecore