17 research outputs found

    Virtual Compton Scattering off the Pseudoscalar Meson Octet

    Get PDF
    We present a calculation of the virtual Compton scattering amplitude for the pseudoscalar meson octet in the framework of chiral perturbation theory at O(p4){\cal O}(p^4). We calculate the electromagnetic generalized polarizabilities and compare the results in the real Compton scattering limit to available experimental values. Finally, we give predictions for the differential cross section of electron-meson bremsstrahlung.Comment: 9 pages, Latex, uses cjp3.sty (included), 4 eps figures, to be published in the proceedings of the 13th Indian-Summer School "Understanding the Structure of Hadrons," August 28 - September 1, 2000, Prague, Czech Republi

    Radiative corrections to neutral pion-pair production

    Full text link
    We calculate the one-photon loop radiative corrections to the neutral pion-pair photoproduction process π−γ→π−π0π0\pi^-\gamma \to \pi^-\pi^0\pi^0. At leading order this reaction is governed by the chiral pion-pion interaction. Since the chiral π+π−→π0π0\pi^+\pi^-\to\pi^0\pi^0 contact-vertex depends only on the final-state invariant-mass it factors out of all photon-loop diagrams. We give analytical expressions for the multiplicative correction factor R∼α/2πR\sim \alpha/2\pi arising from eight classes of contributing one-photon loop diagrams. An electromagnetic counterterm has to be included in order to cancel the ultraviolet divergences generated by the photon-loops. Infrared finiteness of the virtual radiative corrections is achieved (in the standard way) by including soft photon radiation below an energy cut-off λ\lambda. The radiative corrections to the total cross section vary between +2%+2\% and −2%-2\% for center-of-mass energies from threshold up to 7mπ7m_\pi. The finite part of the electromagnetic counterterm gives an additional constant contribution of about 1%1\%, however with a large uncertainty.Comment: 10 pages, 6 figures, submitted to Eur. Phys. J.

    Chiral effective field theories of the strong interactions

    Full text link
    Effective field theories of the strong interactions based on the approximate chiral symmetry of QCD provide a model-independent approach to low-energy hadron physics. We give a brief introduction to mesonic and baryonic chiral perturbation theory and discuss a number of applications. We also consider the effective field theory including vector and axial-vector mesons.Comment: 22 pages, 9 figures, proceedings of "Many-Body Structure of Strongly Interacting Systems", Mainz, Germany, Feb. 23-25 201

    Ladder Dyson-Schwinger calculation of the anomalous gamma-3pi form factor

    Full text link
    The anomalous processes, \gamma \to 3 \pi and \gamma \pi \to \pi\pi, are investigated within the Dyson-Schwinger framework using the rainbow-ladder approximation. Calculations reveal that a complete set of ladder diagrams beyond the impulse approximation are necessary to reproduce the fundamental low-energy theorem for the anomalous form factor. Higher momentum calculations also agree with the limited form factor data and exhibit the same resonance behavior as the phenomenological vector meson dominance model.Comment: 9 pages, 8 .eps figures, Revte

    Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s=0.9 and 2.36 TeV

    Get PDF
    Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at root s = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(ch)/d eta vertical bar(vertical bar eta vertical bar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date

    Experimental Study of the Radiative Scattering PI-P-]PI-P-gamma at 43 GEV

    No full text
    The pion radiative scattering (x-p + x-py) has been studied at 43 GeV in the interval 0.2 lt, l 0.4 (GeV/c)2 of the momentum transfer squared to the proton and in the range of photon energy 2 < w < 40 GeV. Calculations based on Low theorem agree well with measured w, t, and m, (final xy-invariant mass) differential cross-sections. The results obtained extend the validity of Low approach to the radiative scattering at high energies
    corecore