1,302 research outputs found
B decay and the Upsilon mass
Theoretical predictions for inclusive semileptonic B decay rates are
rewritten in terms of the Upsilon(1S) meson mass instead of the b quark mass,
using a modified perturbation expansion. This method gives theoretically
consistent and phenomenologically useful results. Perturbation theory is well
behaved, and the largest theoretical error in the predictions coming from the
uncertainty in the quark mass is eliminated. The results are applied to the
determination of , , and .Comment: 8 pages revte
Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study
BACKGROUND: Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. RESULTS: The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. CONCLUSIONS: Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens
Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target
111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA
Colour reconnection in e+e- -> W+W- at sqrt(s) = 189 - 209 GeV
The effects of the final state interaction phenomenon known as colour
reconnection are investigated at centre-of-mass energies in the range sqrt(s) ~
189-209 GeV using the OPAL detector at LEP. Colour reconnection is expected to
affect observables based on charged particles in hadronic decays of W+W-.
Measurements of inclusive charged particle multiplicities, and of their angular
distribution with respect to the four jet axes of the events, are used to test
models of colour reconnection. The data are found to exclude extreme scenarios
of the Sjostrand-Khoze Type I (SK-I) model and are compatible with other
models, both with and without colour reconnection effects. In the context of
the SK-I model, the best agreement with data is obtained for a reconnection
probability of 37%. Assuming no colour reconnection, the charged particle
multiplicity in hadronically decaying W bosons is measured to be (nqqch) =
19.38+-0.05(stat.)+-0.08 (syst.).Comment: 30 pages, 9 figures, Submitted to Euro. Phys. J.
Measurement of the Strong Coupling alpha s from Four-Jet Observables in e+e- Annihilation
Data from e+e- annihilation into hadrons at centre-of-mass energies between
91 GeV and 209 GeV collected with the OPAL detector at LEP, are used to study
the four-jet rate as a function of the Durham algorithm resolution parameter
ycut. The four-jet rate is compared to next-to-leading order calculations that
include the resummation of large logarithms. The strong coupling measured from
the four-jet rate is alphas(Mz0)=
0.1182+-0.0003(stat.)+-0.0015(exp.)+-0.0011(had.)+-0.0012(scale)+-0.0013(mass)
in agreement with the world average. Next-to-leading order fits to the
D-parameter and thrust minor event-shape observables are also performed for the
first time. We find consistent results, but with significantly larger
theoretical uncertainties.Comment: 25 pages, 15 figures, Submitted to Euro. Phys. J.
Search for R-Parity Violating Decays of Scalar Fermions at LEP
A search for pair-produced scalar fermions under the assumption that R-parity
is not conserved has been performed using data collected with the OPAL detector
at LEP. The data samples analysed correspond to an integrated luminosity of
about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An
important consequence of R-parity violation is that the lightest supersymmetric
particle is expected to be unstable. Searches of R-parity violating decays of
charged sleptons, sneutrinos and squarks have been performed under the
assumptions that the lightest supersymmetric particle decays promptly and that
only one of the R-parity violating couplings is dominant for each of the decay
modes considered. Such processes would yield final states consisting of
leptons, jets, or both with or without missing energy. No significant
single-like excess of events has been observed with respect to the Standard
Model expectations. Limits on the production cross- section of scalar fermions
in R-parity violating scenarios are obtained. Constraints on the supersymmetric
particle masses are also presented in an R-parity violating framework analogous
to the Constrained Minimal Supersymmetric Standard Model.Comment: 51 pages, 24 figures, Submitted to Eur. Phys. J.
WW Production Cross Section and W Branching Fractions in e+e- Collisions at 189 GeV
From a data sample of 183 pb^-1 recorded at a center-of-mass energy of roots
= 189 GeV with the OPAL detector at LEP, 3068 W-pair candidate events are
selected. Assuming Standard Model W boson decay branching fractions, the W-pair
production cross section is measured to be sigmaWW = 16.30 +- 0.34(stat.) +-
0.18(syst.) pb. When combined with previous OPAL measurements, the W boson
branching fraction to hadrons is determined to be 68.32 +- 0.61(stat.) +-
0.28(syst.) % assuming lepton universality. These results are consistent with
Standard Model expectations.Comment: 22 pages, 5 figures, submitted to Phys. Lett.
Determination of alpha_s using Jet Rates at LEP with the OPAL detector
Hadronic events produced in e+e- collisions by the LEP collider and recorded
by the OPAL detector were used to form distributions based on the number of
reconstructed jets. The data were collected between 1995 and 2000 and
correspond to energies of 91 GeV, 130-136 GeV and 161-209 GeV. The jet rates
were determined using four different jet-finding algorithms (Cone, JADE, Durham
and Cambridge). The differential two-jet rate and the average jet rate with the
Durham and Cambridge algorithms were used to measure alpha(s) in the LEP energy
range by fitting an expression in which order alpah_2s calculations were
matched to a NLLA prediction and fitted to the data. Combining the measurements
at different centre-of-mass energies, the value of alpha_s (Mz) was determined
to be
alpha(s)(Mz)=0.1177+-0.0006(stat.)+-0.0012$(expt.)+-0.0010(had.)+-0.0032(theo.)
\.Comment: 40 pages, 17 figures, Submitted to Euro. Phys. J.
W Boson Polarisation at LEP2
Elements of the spin density matrix for W bosons in e+e- -> W+W- -> qqln
events are measured from data recorded by the OPAL detector at LEP. This
information is used calculate polarised differential cross-sections and to
search for CP-violating effects. Results are presented for W bosons produced in
e+e- collisions with centre-of-mass energies between 183 GeV and 209 GeV. The
average fraction of W bosons that are longitudinally polarised is found to be
(23.9 +- 2.1 +- 1.1)% compared to a Standard Model prediction of (23.9 +-
0.1)%. All results are consistent with CP conservation.Comment: 20 pages, 3 figures, Submitted to Phys. Letts.
- …
