746 research outputs found

    Application of functionalized nanofluid in thermosyphon

    Get PDF
    A water-based functionalized nanofluid was made by surface functionalizing the ordinary silica nanoparticles. The functionalized nanofluid can keep long-term stability. and no sedimentation was observed. The functionalized nanofluid as the working fluid is applied in a thermosyphon to understand the effect of this special nanofluid on the thermal performance of the thermosyphon. The experiment was carried out under steady operating pressures. The same work was also explored for traditional nanofluid (consisting of water and the same silica nanoparticles without functionalization) for comparison. Results indicate that a porous deposition layer exists on the heated surface of the evaporator during the operating process using traditional nanofluid; however, no coating layer exists for functionalized nanofluid. Functionalized nanofluid can enhance the evaporating heat transfer coefficient, while it has generally no effect on the maximum heat flux. Traditional nanofluid deteriorates the evaporating heat transfer coefficient but enhances the maximum heat flux. The existence of the deposition layer affects mainly the thermal performance, and no meaningful nanofluid effect is found in the present study

    Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

    Get PDF
    Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin

    Twist expression promotes migration and invasion in hepatocellular carcinoma

    Get PDF
    Background: Twist, a transcription factor of the basic helix-loop-helix class, is reported to regulate cancer metastasis. It is known to induce epithelial-mesenchymal transition (EMT). In this study, we evaluated the expression of twist and its effect on cell migration in hepatocellular carcinoma (HCC). Methods: We examined twist expression using immunohistochemistry in 20 tissue samples of hepatocellular carcinoma, and assessed twist expression in HCC cell lines by RT-PCR and Western blot analysis. Ectopic twist expression was created by introducing a twist construct in the twist-negative HCC cell lines. Endogenous twist expression was blocked by twist siRNA in the twist-positive HCC cell lines. We studied EMT related markers, E-cadherin, Vimentin, and N-cadherin by Western blot analysis. Cell proliferation was measured by MTT assay, and cell migration was measured by in vitro wound healing assay. We used immunofluorescent vinculin staining to visualize focal adhesion. Results: We detected strong and intermediate twist expression in 7 of 20 tumor samples, and no significant twist expression was found in the tumor-free resection margins. In addition, we detected twist expression in HLE, HLF, and SK-Hep1 cells, but not in PLC/RPF/5, HepG2, and Huh7 cells. Ectopic twist-expressing cells demonstrated enhanced cell motility, but twist expression did not affect cell proliferation. Twist expression induced epithelial-mesenchymal transition together with related morphologic changes. Focal adhesion contact was reduced significantly in ectopic twist-expressing cells. Twist-siRNA-treated HLE, HLF, and SK-Hep1 cells demonstrated a reduction in cell migration by 50, 40 and 18%, respectively. Conclusion: Twist induces migratory effect on hepatocellular carcinoma by causing epithelial-mesenchymal transition

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Computational identification of ubiquitylation sites from protein sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ubiquitylation plays an important role in regulating protein functions. Recently, experimental methods were developed toward effective identification of ubiquitylation sites. To efficiently explore more undiscovered ubiquitylation sites, this study aims to develop an accurate sequence-based prediction method to identify promising ubiquitylation sites.</p> <p>Results</p> <p>We established an ubiquitylation dataset consisting of 157 ubiquitylation sites and 3676 putative non-ubiquitylation sites extracted from 105 proteins in the UbiProt database. This study first evaluates promising sequence-based features and classifiers for the prediction of ubiquitylation sites by assessing three kinds of features (amino acid identity, evolutionary information, and physicochemical property) and three classifiers (support vector machine, <it>k</it>-nearest neighbor, and NaïveBayes). Results show that the set of used 531 physicochemical properties and support vector machine (SVM) are the best kind of features and classifier respectively that their combination has a prediction accuracy of 72.19% using leave-one-out cross-validation.</p> <p>Consequently, an informative physicochemical property mining algorithm (IPMA) is proposed to select an informative subset of 531 physicochemical properties. A prediction system UbiPred was implemented by using an SVM with the feature set of 31 informative physicochemical properties selected by IPMA, which can improve the accuracy from 72.19% to 84.44%. To further analyze the informative physicochemical properties, a decision tree method C5.0 was used to acquire if-then rule-based knowledge of predicting ubiquitylation sites. UbiPred can screen promising ubiquitylation sites from putative non-ubiquitylation sites using prediction scores. By applying UbiPred, 23 promising ubiquitylation sites were identified from an independent dataset of 3424 putative non-ubiquitylation sites, which were also validated by using the obtained prediction rules.</p> <p>Conclusion</p> <p>We have proposed an algorithm IPMA for mining informative physicochemical properties from protein sequences to build an SVM-based prediction system UbiPred. UbiPred can predict ubiquitylation sites accompanied with a prediction score each to help biologists in identifying promising sites for experimental verification. UbiPred has been implemented as a web server and is available at <url>http://iclab.life.nctu.edu.tw/ubipred</url>.</p

    Statistical Optimization of Process Variables for Antibiotic Activity of Xenorhabdus bovienii

    Get PDF
    The production of secondary metabolites with antibiotic properties is a common characteristic to entomopathogenic bacteria Xenorhabdus spp. These metabolites not only have diverse chemical structures but also have a wide range of bioactivities of medicinal and agricultural interests. Culture variables are critical to the production of secondary metabolites of microorganisms. Manipulating culture process variables can promote secondary metabolite biosynthesis and thus facilitate the discovery of novel natural products. This work was conducted to evaluate the effects of five process variables (initial pH, medium volume, rotary speed, temperature, and inoculation volume) on the antibiotic production of Xenorhabdus bovienii YL002 using response surface methodology. A 25–1 factorial central composite design was chosen to determine the combined effects of the five variables, and to design a minimum number of experiments. The experimental and predicted antibiotic activity of X. bovienii YL002 was in close agreement. Statistical analysis of the results showed that initial pH, medium volume, rotary speed and temperature had a significant effect (P<0.05) on the antibiotic production of X. bovienii YL002 at their individual level; medium volume and rotary speed showed a significant effect at a combined level and was most significant at an individual level. The maximum antibiotic activity (287.5 U/mL) was achieved at the initial pH of 8.24, medium volume of 54 mL in 250 mL flask, rotary speed of 208 rpm, temperature of 32.0°C and inoculation volume of 13.8%. After optimization, the antibiotic activity was improved by 23.02% as compared with that of unoptimized conditions

    Dynamic Changes in Protein Functional Linkage Networks Revealed by Integration with Gene Expression Data

    Get PDF
    Response of cells to changing environmental conditions is governed by the dynamics of intricate biomolecular interactions. It may be reasonable to assume, proteins being the dominant macromolecules that carry out routine cellular functions, that understanding the dynamics of protein∶protein interactions might yield useful insights into the cellular responses. The large-scale protein interaction data sets are, however, unable to capture the changes in the profile of protein∶protein interactions. In order to understand how these interactions change dynamically, we have constructed conditional protein linkages for Escherichia coli by integrating functional linkages and gene expression information. As a case study, we have chosen to analyze UV exposure in wild-type and SOS deficient E. coli at 20 minutes post irradiation. The conditional networks exhibit similar topological properties. Although the global topological properties of the networks are similar, many subtle local changes are observed, which are suggestive of the cellular response to the perturbations. Some such changes correspond to differences in the path lengths among the nodes of carbohydrate metabolism correlating with its loss in efficiency in the UV treated cells. Similarly, expression of hubs under unique conditions reflects the importance of these genes. Various centrality measures applied to the networks indicate increased importance for replication, repair, and other stress proteins for the cells under UV treatment, as anticipated. We thus propose a novel approach for studying an organism at the systems level by integrating genome-wide functional linkages and the gene expression data

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore