373 research outputs found

    Revealing the Impact of F4-TCNQ as Additive on Morphology and Performance of High-Efficiency Nonfullerene Organic Solar Cells

    Get PDF
    Fluorinated molecule 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) and its derivatives have been used in polymer:fullerene solar cells primarily as a dopant to optimize the electrical properties and device performance. However, the underlying mechanism and generality of how F4‐TCNQ affects device operation and possibly the morphology is poorly understood, particularly for emerging nonfullerene organic solar cells. In this work, the influence of F4‐TCNQ on the blend film morphology and photovoltaic performance of nonfullerene solar cells processed by a single halogen‐free solvent is systematically investigated using a set of morphological and electrical characterizations. In solar cells with a high‐performance polymer:small molecule blend FTAZ:IT‐M, F4‐TCNQ has a negligibly small effect on the molecular packing and surface characteristics, while it clearly affects the electronic properties and mean‐square composition variation of the bulk. In comparison to the control devices with an average power conversion efficiency (PCE) of 11.8%, inclusion of a trace amount of F4‐TCNQ in the active layer has improved device fill factor and current density, which has resulted into a PCE of 12.4%. Further increase in F4‐TCNQ content degrades device performance. This investigation aims at delineating the precise role of F4‐TCNQ in nonfullerene bulk heterojunction films, and thereby establishing a facile approach to fabricate highly optimized nonfullerene solar cells

    Roles of Fast-Cyclotron and Alfven-Cyclotron Waves for the Multi-Ion Solar Wind

    Full text link
    Using linear Vlasov theory of plasma waves and quasi-linear theory of resonant wave-particle interaction, the dispersion relations and the electromagnetic field fluctuations of fast and Alfven waves are studied for a low-beta multi-ion plasma in the inner corona. Their probable roles in heating and accelerating the solar wind via Landau and cyclotron resonances are quantified. We assume that (1) low-frequency Alfven and fast waves have the same spectral shape and the same amplitude of power spectral density; (2) these waves eventually reach ion cyclotron frequencies due to a turbulence cascade; (3) kinetic wave-particle interaction powers the solar wind. The existence of alpha particles in a dominant proton/electron plasma can trigger linear mode conversion between oblique fast-whistler and hybrid alpha-proton cyclotron waves. The fast-cyclotron waves undergo both alpha and proton cyclotron resonances. The alpha cyclotron resonance in fast-cyclotron waves is much stronger than that in Alfven-cyclotron waves. For alpha cyclotron resonance, an oblique fast-cyclotron wave has a larger left-handed electric field fluctuation, a smaller wave number, a larger local wave amplitude, and a greater energization capability than a corresponding Alfven-cyclotron wave at the same wave propagation angle \theta, particularly at 80∘80^\circ < \theta < 90∘90^\circ. When Alfven-cyclotron or fast-cyclotron waves are present, alpha particles are the chief energy recipient. The transition of preferential energization from alpha particles to protons may be self-modulated by differential speed and temperature anisotropy of alpha particles via the self-consistently evolving wave-particle interaction. Therefore, fast-cyclotron waves as a result of linear mode coupling is a potentially important mechanism for preferential energization of minor ions in the main acceleration region of the solar wind.Comment: 29 pages, 10 figures, 3 tables. Accepted for publication in Solar Physic

    Numerical sedimentation particle-size analysis using the Discrete Element Method

    Full text link
    Sedimentation tests are widely used to determine the particle size distribution of a granular sample. In this work, the Discrete Element Method interacts with the simulation of flow using the well known one-way- coupling method, a computationally affordable approach for the time-consuming numerical simulation of the hydrometer, buoyancy and pipette sedimentation tests. These tests are used in the laboratory to determine the particle-size distribution of fine-grained aggregates. Five samples with different particle-size distributions are modeled by about six million rigid spheres pro- jected on two-dimensions, with diameters ranging from 2.5 × 10&#8722;6 m to 70 × 10&#8722;6 m, forming a water sus- pension in a sedimentation cylinder. DEM simulates the particle s movement considering laminar flow in- teractions of buoyant, drag and lubrication forces. The simulation provides the temporal/spatial distributions of densities and concentrations of the suspension. The numerical simulations cannot replace the laboratory tests since they need the final granulometry as initial data, but, as the results show, these simulations can identify the strong and weak points of each method and eventually recommend useful variations and draw conclusions on their validity, aspects very difficult to achieve in the laboratory.R. Bravo and J.L. Perez-Aparicio were partially supported by the project MICIIN #BIA-2012-32918. The second researcher used the grant GV BEST/2014/232 for the completion of this work. J. Jaime Gomez-Hernandez acknowledges the financial aid from project MINECO CGL2011-23295.Bravo, R.; PĂ©rez Aparicio, JL.; GĂłmez HernĂĄndez, JJ. (2015). Numerical sedimentation particle-size analysis using the Discrete Element Method. Advances in Water Resources. 86:58-72. https://doi.org/10.1016/j.advwatres.2015.09.024S58728

    Hall Effect and Resistivity in High-Tc Superconductors: The Conserving Approximation

    Full text link
    The Hall coefficient (R_H) of high-Tc cuprates in the normal state shows the striking non-Fermi liquid behavior: R_H follows a Curie-Weiss type temperature dependence, and |R_H|>>1/|ne| at low temperatures in the under-doped compounds. Moreover, R_H is positive for hole-doped compounds and is negative for electron-doped ones, although each of them has a similar hole-like Fermi surface. In this paper, we give the explanation of this long-standing problem from the standpoint of the nearly antiferromagnetic (AF) Fermi liquid. We consider seriously the vertex corrections for the current which are indispensable to satisfy the conservation laws, which are violated within the conventional Boltzmann transport approximation. The obtained total current J_k takes an enhanced value and is no more perpendicular to the Fermi surface due to the strong AF fluctuations. By virtue of this mechanism, the anomalous behavior of R_H in high-Tc cuprates is neutrally explained. We find that both the temperature and the (electron, or hole) doping dependences of R_H in high-T_c cuprates are reproduced well by numerical calculations based on the fluctuation-exchange (FLEX) approximation, applied to the single-band Hubbard model. We also discuss the temperature dependence of R_H in other nearly AF metals, e.g., V_2O_3, kappa-BEDT-TTF organic superconductors, and heavy fermion systems close to the AF phase boundary.Comment: 19 pages, to appear in Phys. Rev. B, No.59, Vol.22, 199

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Measurements of the production cross-section for a Z boson in association with b- or c-jets in proton–proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the production cross-section of a Z boson in association with bor c-jets, in proton–proton collisions at √s = 13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb−1. Inclusive and differential cross-sections are measured for events containing a Z boson decaying into electrons or muons and produced in association with at least one b-jet, at least one c-jet, or at least two b-jets with transverse momentum pT > 20 GeV and rapidity |y| < 2.5. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected Z+ ≄ 1 c-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions

    Constraints on simplified dark matter models involving an s-channel mediator with the ATLAS detector in pp collisions at s = 13 TeV

    Get PDF
    • 

    corecore