582 research outputs found

    Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling

    Get PDF
    Abstract. We undertook a comprehensive evaluation of 22 gridded (quasi-)global (sub-)daily precipitation (P) datasets for the period 2000–2016. Thirteen non-gauge-corrected P datasets were evaluated using daily P gauge observations from 76 086 gauges worldwide. Another nine gauge-corrected datasets were evaluated using hydrological modeling, by calibrating the HBV conceptual model against streamflow records for each of 9053 small to medium-sized ( <  50 000 km2) catchments worldwide, and comparing the resulting performance. Marked differences in spatio-temporal patterns and accuracy were found among the datasets. Among the uncorrected P datasets, the satellite- and reanalysis-based MSWEP-ng V1.2 and V2.0 datasets generally showed the best temporal correlations with the gauge observations, followed by the reanalyses (ERA-Interim, JRA-55, and NCEP-CFSR) and the satellite- and reanalysis-based CHIRP V2.0 dataset, the estimates based primarily on passive microwave remote sensing of rainfall (CMORPH V1.0, GSMaP V5/6, and TMPA 3B42RT V7) or near-surface soil moisture (SM2RAIN-ASCAT), and finally, estimates based primarily on thermal infrared imagery (GridSat V1.0, PERSIANN, and PERSIANN-CCS). Two of the three reanalyses (ERA-Interim and JRA-55) unexpectedly obtained lower trend errors than the satellite datasets. Among the corrected P datasets, the ones directly incorporating daily gauge data (CPC Unified, and MSWEP V1.2 and V2.0) generally provided the best calibration scores, although the good performance of the fully gauge-based CPC Unified is unlikely to translate to sparsely or ungauged regions. Next best results were obtained with P estimates directly incorporating temporally coarser gauge data (CHIRPS V2.0, GPCP-1DD V1.2, TMPA 3B42 V7, and WFDEI-CRU), which in turn outperformed the one indirectly incorporating gauge data through another multi-source dataset (PERSIANN-CDR V1R1). Our results highlight large differences in estimation accuracy, and hence the importance of P dataset selection in both research and operational applications. The good performance of MSWEP emphasizes that careful data merging can exploit the complementary strengths of gauge-, satellite-, and reanalysis-based P estimates

    Multi-timescale Solar Cycles and the Possible Implications

    Full text link
    Based on analysis of the annual averaged relative sunspot number (ASN) during 1700 -- 2009, 3 kinds of solar cycles are confirmed: the well-known 11-yr cycle (Schwabe cycle), 103-yr secular cycle (numbered as G1, G2, G3, and G4, respectively since 1700); and 51.5-yr Cycle. From similarities, an extrapolation of forthcoming solar cycles is made, and found that the solar cycle 24 will be a relative long and weak Schwabe cycle, which may reach to its apex around 2012-2014 in the vale between G3 and G4. Additionally, most Schwabe cycles are asymmetric with rapidly rising-phases and slowly decay-phases. The comparisons between ASN and the annual flare numbers with different GOES classes (C-class, M-class, X-class, and super-flare, here super-flare is defined as ≄\geq X10.0) and the annal averaged radio flux at frequency of 2.84 GHz indicate that solar flares have a tendency: the more powerful of the flare, the later it takes place after the onset of the Schwabe cycle, and most powerful flares take place in the decay phase of Schwabe cycle. Some discussions on the origin of solar cycles are presented.Comment: 8 pages, 4 figure

    R parity violating contribution to e+e−(ÎŒ+Ό−)→tcˉe^+e^-(\mu^+\mu^-)\to t{\bar c}

    Full text link
    In this article we consider the contribution of RpR_p violating couplings to the process e+e−(ÎŒ+Ό−)→tcˉe^+e^-(\mu^+\mu^-)\to t{\bar c} at high energy lepton collider. We show that the present upper bound on the relevant RpR_p violating coulpings obtained from low energy measurements would produce a few hundred to a thousand top-charm events at the next linear e+e−(ÎŒ+Ό−)e^+e^-(\mu^+\mu^-) collider. Hence, it should be possible to observe the rare process at future lepton collider.Comment: LaTEX, 13 pages, one figure is removed. A brief discussion on possible backgrounds is added. To appear in Phys. Rev.

    The Weak Charge of the Proton and New Physics

    Get PDF
    We address the physics implications of a precision determination of the weak charge of the proton, QWP, from a parity violating elastic electron proton scattering experiment to be performed at the Jefferson Laboratory. We present the Standard Model (SM) expression for QWP including one-loop radiative corrections, and discuss in detail the theoretical uncertainties and missing higher order QCD corrections. Owing to a fortuitous cancellation, the value of QWP is suppressed in the SM, making it a unique place to look for physics beyond the SM. Examples include extra neutral gauge bosons, supersymmetry, and leptoquarks. We argue that a QWP measurement will provide an important complement to both high energy collider experiments and other low energy electroweak measurements. The anticipated experimental precision requires the knowledge of the order alpha_s corrections to the pure electroweak box contributions. We compute these contributions for QWP, as well as for the weak charges of heavy elements as determined from atomic parity violation.Comment: 22 pages of LaTeX, 5 figure

    Global Reconstruction of Naturalized River Flows at 2.94 Million Reaches

    Get PDF
    Spatiotemporally continuous global river discharge estimates across the full spectrum of stream orders are vital to a range of hydrologic applications, yet they remain poorly constrained. Here we present a carefully designed modeling effort (Variable Infiltration Capacity land surface model and Routing Application for Parallel computatIon of Discharge river routing model) to estimate global river discharge at very high resolutions. The precipitation forcing is from a recently published 0.1° global product that optimally merged gauge-, reanalysis-, and satellite-based data. To constrain runoff simulations, we use a set of machine learning-derived, global runoff characteristics maps (i.e., runoff at various exceedance probability percentiles) for grid-by-grid model calibration and bias correction. To support spaceborne discharge studies, the river flowlines are defined at their true geometry and location as much as possible—approximately 2.94 million vector flowlines (median length 6.8 km) and unit catchments are derived from a high-accuracy global digital elevation model at 3-arcsec resolution (~90 m), which serves as the underlying hydrography for river routing. Our 35-year daily and monthly model simulations are evaluated against over 14,000 gauges globally. Among them, 35% (64%) have a percentage bias within ±20% (±50%), and 29% (62%) have a monthly Kling-Gupta Efficiency ≄0.6 (0.2), showing data robustness at the scale the model is assessed. This reconstructed discharge record can be used as a priori information for the Surface Water and Ocean Topography satellite mission's discharge product, thus named “Global Reach-level A priori Discharge Estimates for Surface Water and Ocean Topography”. It can also be used in other hydrologic applications requiring spatially explicit estimates of global river flows

    Utilizing image texture to detect land-cover change in Mediterranean coastal wetlands

    Get PDF
    Land-use/cover change dynamics were investigated in a Mediterranean coastal wetland. Change Vector Analysis (CVA) without and with image texture derived from the co-occurrence matrix and variogram were evaluated for detecting land-use/cover change. Three Landsat Thematic Mapper (TM) scenes recorded on July 1985, 1993 and 2005 were used, minimizing change detection error caused by seasonal differences. Images were geometrically, atmospherically and radiometrically corrected. CVA without and with texture measures were implemented and assessed using reference images generated by object-based supervised classification. These outputs were used for cross-classification to determine the ‘from–to’ change used to compare between techniques. The Landsat TM image bands together with the variogram yielded the most accurate change detection results, with Kappa statistics of 0.7619 and 0.7637 for the 1985–1993 and 1993–2005 image pairs, respectively

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for the production of neutral Higgs bosons decaying into tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the 95% C.L. on the product of production cross section and branching ratio for a scalar resonance decaying into tautau pairs, and we then interpret these limits as limits on the production of Higgs bosons in the minimal supersymmetric standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL
    • 

    corecore