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Abstract Spatiotemporally continuous global river discharge estimates across the full spectrum of
stream orders are vital to a range of hydrologic applications, yet they remain poorly constrained. Here we
present a carefully designed modeling effort (Variable Infiltration Capacity land surface model and Routing
Application for Parallel computatIon of Discharge river routing model) to estimate global river discharge at
very high resolutions. The precipitation forcing is from a recently published 0.1° global product that
optimally merged gauge‐, reanalysis‐, and satellite‐based data. To constrain runoff simulations, we use a set
of machine learning‐derived, global runoff characteristics maps (i.e., runoff at various exceedance
probability percentiles) for grid‐by‐grid model calibration and bias correction. To support spaceborne
discharge studies, the river flowlines are defined at their true geometry and location as much as possible
—approximately 2.94 million vector flowlines (median length 6.8 km) and unit catchments are derived
from a high‐accuracy global digital elevation model at 3‐arcsec resolution (~90 m), which serves as the
underlying hydrography for river routing. Our 35‐year daily and monthly model simulations are evaluated
against over 14,000 gauges globally. Among them, 35% (64%) have a percentage bias within ±20% (±50%),
and 29% (62%) have a monthly Kling‐Gupta Efficiency ≥0.6 (0.2), showing data robustness at the scale the
model is assessed. This reconstructed discharge record can be used as a priori information for the Surface
Water and Ocean Topography satellite mission's discharge product, thus named “Global Reach‐level A
priori Discharge Estimates for Surface Water and Ocean Topography”. It can also be used in other
hydrologic applications requiring spatially explicit estimates of global river flows.

1. Introduction

Reconstructing historical river flows across the full spectrum of stream orders is of vital importance for scien-
tific understanding of global water and biogeochemical cycles (Downing, 2012; Oki & Kanae, 2006) and the
greenhouse gas contribution from rivers to the global carbon budget (Catalán et al., 2016; Lauerwald et al.,
2015; Marx et al., 2017; Raymond et al., 2013). It is also of tremendous practical value to be able to predict
global river flows at hyperresolution with appropriate lead times (Bierkens et al., 2015; Wood et al., 2011)
to inform early flood and drought warnings. However, adequate reconstruction and prediction of global river
flow dynamics is still hindered by many challenges in front of the research communities.

Stream gauging is the most accurate way to measure river discharge, but the spatial coverage of global gauge
observations is largely limited for practical, economic, and political reasons (Fekete & Vörösmarty, 2007).
Recent decreases in active stream gauges (Hannah et al., 2011) have exacerbated the problem especially
for understanding the hydrology in ungauged basins (Sivapalan, 2003). Hydrologic modeling can be used
to fill in the spatial gaps and predict flows in ungauged basins. However, the performance of hydrologic
modeling often suffers from the lack of high‐quality global data sets for modeling inputs (Beck et al.,
2019), optimal combination of physical parameterization schemes (Zheng et al., 2018), reliable approaches
to estimating model parameters (Samaniego et al., 2010), and computational power to represent physical
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realism at sufficiently high resolutions (Bierkens et al., 2015). In recent decades, global river modeling has
seen advancements in better physical representations of floodplain and hillslope processes (Li et al., 2013;
Yamazaki et al., 2011), improved routing methods (Bates et al., 2010; Häfliger et al., 2015; Ngo‐Duc et al.,
2007), incorporation of human activity and water management modules (Hanasaki et al., 2006;
Sutanudjaja et al., 2018; Zajac et al., 2017), and improved precipitation forcing data from satellites
(Wu et al., 2014). However, often research emphasizes a single aspect of the hydrologic modeling chain,
that is, forcing, land surface models (LSMs), or routing, while attempts to systematically reduce the uncer-
tainty from all components have been relatively rare. In addition, although the coarse channel representa-
tions used by pioneering global routing studies (Lohmann et al., 1998; Miller et al., 1994; Oki & Sud,
1998) have been improved in recent studies, these have not yet advanced to a scale that pertains to “locally
relevant” societal needs (Bierkens et al., 2015) and a scale matching satellite depiction of the global water
surfaces (Allen & Pavelsky, 2018; Pekel et al., 2016). For example, the finest channel resolution in previous
global river modeling studies is at the level of kilometers, for example, 5 arcmin (~8 km; Sutanudjaja et al.,
2018), 1/16° (~6 km; Li et al., 2013), and 15 arcmin (~25 km; Yamazaki et al., 2011). However, rivers
are highly sinuous geomorphic features and require much finer depictions at a resolution of meters to
tens of meters to preserve the true planform flow geometry, and this scale has not been pinned down by
existing global river routing models. Several studies have used vector‐based river network for realistic
channel representations while being computationally efficient (David et al., 2011; Lehner & Grill, 2013;
Yamazaki et al., 2013). These vector‐based models are very promising, but they have yet to be implemented
at the global scale.

Recent progress in remote sensing (RS) offers promising alternatives to monitoring global river discharge
from space (Bjerklie et al., 2018; Dijk et al., 2016; Durand et al., 2016; Gleason et al., 2014; Gleason &
Smith, 2014; Hagemann et al., 2017; Tarpanelli et al., 2013). These RS progresses may particularly benefit
regions with complex processes where simple extrapolations of model physical parameterizations may raise
problems. Although collected less frequently than desired for daily streamflow estimation, RS can also
greatly complement the stream gauge observations in terms of spatial coverage. However, the conversion
of RS observations to streamflow estimates is also subject to large uncertainties (e.g., Biancamaria et al.,
2010; Durand et al., 2016; Gleason et al., 2014). For example, the upcoming Surface Water and Ocean
Topography (SWOT) mission, scheduled for launch in 2021, will provide global estimates of river discharge
derived exclusively from its interferometer measurements, which will set a new standard in RS (Biancamaria
et al., 2016). Based on SWOT's expected observations of river width, height, and slope, a range of discharge
algorithms have been developed and intercompared to evaluate the strengths and weaknesses of each
algorithm in different climatic and hydraulic settings (Durand et al., 2016). Note that as SWOT is not yet
launched, SWOT discharge algorithms were developed and tested using either hydraulic model outputs
(e.g., Bonnema et al., 2016; Durand et al., 2016), estimates of river width and/or height from current satellites
(Bjerklie et al., 2018; Gleason et al., 2014; Hagemann et al., 2017), or AirSWOT, an airborne variant of the
SWOT instrument (e.g., Tuozzolo et al., 2019). However, due to the underconstrained nature of the estima-
tion problem (i.e., solving for discharge without knowing channel geometry and friction parameter), existing
SWOT discharge algorithms improve as prior knowledge of river discharge improves (Durand et al., 2016).
For example, Tuozzolo et al. (2019) recently tested three algorithms on AirSWOT data collected over the
Willamette River in Oregon, USA, and found that all three algorithms were sensitive to the initial estimates
of mean annual discharge used to begin the estimation process. While the importance of initial estimates of
river flows is highlighted, at the global scale, models remain the only tool for providing such estimates, and,
at present, hydrologic modeling outputs from the Water Balance Model (WBM; Wisser et al., 2010) or
WBMsed (Cohen et al., 2014) are used to provide prior information to current SWOT algorithms.
However, the model is run at relatively low resolution (5‐arcmin at global scale), and there is a lack of
spatially explicit understanding of the skill of the WBM‐simulated discharge. This limitation potentially
hampers future SWOT discharge accuracy for global rivers, and it has become increasingly clear that ade-
quate modeling must be separately conducted so that the novel RS measurements such as those from
SWOT can improve the best‐possible current understanding of global flows.

To provide an improved a priori estimate of global river flows in support of the SWOT mission and other
scientific applications requiring spatiotemporally continuous discharge estimates, we aim to develop an
advanced modeling framework that simulates reach‐scale river discharge based on realistically
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represented channel networks. The modeling framework attempts to
address the challenges facing the field of global river modeling (i.e., coarse
channel representations and a lack of systematic uncertainty reduction)
while considering the specific needs of SWOT. A range of state‐of‐the‐art
global data sets and novel modeling practices are developed and synthe-
sized to achieve the optimal model performance (section 2). The 35‐year
reconstruction of daily and monthly streamflow records (1979 to 2014)
are comprehensively assessed using observations from over 14,000 stream
gauges globally, covering the full spectrum of stream orders, and the aim is
to inform, to themaximum extent possible, the capabilities and limitations
of the modeling database. Lastly, we present the final modeling results in
the context of SWOT‐observable river reaches as an example to illustrate
the potential applications of the updated global flow record.

The paper is organized as follows: The models, data, and newly devel-
oped methods of this study are described in section 2. Section 3 presents
the modeling results with comprehensive global assessments, analyses
of methods to improve the model simulation, analyses of factors poten-
tially influencing the model performance, followed by discussing the

utility of the results to the SWOT mission. Section 4 closes with major conclusions and suggestions for
future work.

2. Data, Models, and Methods
2.1. Hydrologic Modeling Workflow

Streamflow modeling sits at the end of the hydrologic modeling chain consisting of atmospheric forcing,
LSMs, and a river routing model (Figure 1, black boxes). Therefore, its modeling uncertainty can stem from
all these upstream components. To constrain the uncertainty as much as possible, we use the state‐of‐the‐art
datasets available at the global scale and a range of newly developed modeling practices as detailed below
(blue boxes in Figure 1):

1. For the precipitation forcing, a recently published 0.1° and 3‐hourly precipitation data set that optimally
merges a range of gauge‐, reanalysis‐, and satellite‐based precipitation with full global coverage (Beck
et al., 2019) is used. Other forcing variables (including min/max 2‐m air temperatures and 10‐m wind
speed) are obtained from the Climate Forecasting System Reanalysis.

2. For runoff simulation, the Variable Infiltration Capacity (VIC) LSM (Liang et al., 1994) is used, where
model parameter calibration and bias correction (BC) are performed against machine learning
(ML)‐derived, global runoff characteristic maps (Beck et al., 2015; hereafter Qc maps). More specifically,
Beck et al. (2015) regionalized runoff signatures (i.e., runoff values at specific levels) to the global scale by
regressing discharge observations from 3,000–4,000 naturalized catchments to 20 climatic and physio-
graphic predictors through neural network training, which generated 17 global Qc maps. Motivated by
these maps constraining runoff signatures in ungauged basins, new calibration approaches have been
developed and tested for the VIC LSM. In this study, instead of directly calibrating VIC against limited
gauge observation as in a traditional approach, we calibrate VIC at each 0.25° grid cell (a total of ~0.24
million grid cells for the globe) independently, using the baseflow index, climatology runoff (QMEAN),
and runoff percentiles (Q10 andQ90) as the reference. Three sensitive VIC parameters controlling the gen-
eration of surface and subsurface flow are selected for calibration (see Text S1 in the supporting informa-
tion), including the variable infiltration curve parameter (bi), thickness of soil layer 2 (thick2), and
fraction of the maximum velocity of base flow at which nonlinear base flow begins (Ds). The Shuffled
Complex Evolution (SCE‐UA) algorithm is employed to find the optimal parameter set for each grid cell.
The objective function for each grid cell was as follows:

Obj ¼ w1 ln
QMEANm

QMEANo

� �����
����þ w2 ln

BFIm
BFIo

� �����
����þ w3 ln

Q10m

Q10o

� �����
����þ w4 ln

Q90m

Q90o

� �����
����

where subscript o represents GSCD values and subscript m represents values calculated from the model
simulation. wi(i = 1,2,3,4) represents the weighting factor to indicate the importance of each runoff

Figure 1. The hydrologic modeling workflow and data sets to constrain the
global simulation. VIC = Variable Infiltration Capacity; LSM = land surface
model; RAPID = Routing Application for Parallel computatIon of
Discharge; MSWEP = Multi‐Source Weighted‐Ensemble Precipitation.
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characteristics during calibration, and it is set to {0.6, 0.2, 0.1, 0.1} for the four characteristics in this study.
More details of this calibration method will be illustrated in a companion paper. The spatially distributed
global VIC parameters after calibration are shown in Figures S1–S3. Here we develop a new postprocessing
approach to further reduce the model biases that are still present after calibration, and details of the new BC
method named “sparse cumulative density function (CDF) matching” are provided in section 2.2.
3. For the river network routing, the Routing Application for Parallel computatIon of Discharge

(RAPID; David et al., 2011; David, 2019) is used due to its flexibility in dealing with vector river
networks in a range of regional‐ to continental‐scale applications (David et al., 2013; Lin, Hopper,
et al., 2018; Lin, Rajib, et al., 2018; Tavakoly et al., 2017). Global extraction of the vector river flowlines
used for RAPID routing (~2.94 million, covering 60°S to 90°N) are described in section 2.3. Below,
the RAPID configuration and model parameters and its spatial mapping with the VIC LSM are
briefly summarized.

The RAPIDmodel solves a matrix form of the Muskingummethod, which requires two parameters (k and x)
to be estimated for each vector river flowline: while x is a dimensionless weighting factor less sensitive in
Muskingum and is set to 0.3 globally, k is a flood wave travel time parameter that can play a key role in
the routing performance. To reasonably estimate k for the 2.94 million river reaches used for routing, the
following steps are undertaken. Those include (1) running RAPID with QMEAN and arbitrarily set k and x
to generate Qclim for all river reaches, (2) using Qclim to estimate river width (w) and depth (d) following a
long‐established power law equation recently used by Andreadis et al. (2013) to general global data set,
(3) usingManning's equation to estimate flow celerity (c) withw, d, channel slope, andManning's roughness
assumed 0.035, similar to Allen, David, et al. (2018), and (4) using channel length (L) and c to calculate flood
wave travel time (L/c) to obtain k for each river reach. To map the VIC gridded runoff (0.25°) onto the vec-
torized hydrography (section 2.3) to determine the lateral inflows to RAPID, an area‐weighted mapping
technique (Lin, Yang, et al., 2018) is adopted, which is demonstrated to perform better than a simple
centroid‐based runoff extraction technique used in earlier studies (Lin, Rajib, et al., 2018). The RAPIDmodel
also requires the global river network topology (i.e., connectivity) to be specified as inputs. These processes
are all established with Python scripting for computationally efficient global implementation, which is flex-
ible to deal with any grid‐based LSM and vector hydrography (see shared Python scripts at https://github.
com/peironglinlin/GlobalHydro/). The spin‐up time for VIC and RAPID are both five years, and the internal
time step are both 3‐hourly; the modeled discharge is averaged to daily and monthly values for final model
evaluation (sections 3.1 to 3.3).

2.2. A New Approach for BC: Sparse CDF Matching

To deal with the model biases that may still be present after LSM calibration (e.g., biases related to errors
from precipitation forcing, LSM structures/parameterizations, and underrepresented routing processes),
we propose a new BC approach that corrects the VIC runoff biases referenced against nine Qc maps also
delivered by Beck et al. (2015). The problem is very similar to the CDF matching used in a traditional BC
(Reichle & Koster, 2004), except here no full CDF is available except for some sparse percentile values
(Qc). Our assumption is that these Qc maps trained from ML can potentially offer useful information on
runoff signatures beyond our limited knowledge of model processes and parameters, which is in line with
the increasing recognition that considers ML as a powerful approach to understand hydrology in ungauged
basins (e.g., Zhang et al., 2018).

At each VIC grid cell (Figure 2), the model‐simulated daily runoff (35‐year, 12,784 samples) is used to con-
struct the empirical CDF (blue line), with runoff values at different exceedance probabilities computed as
R99,m, R95,m, R90,m, R80,m, R50,m, R20,m, R10,m, R5,m, and R1,m (blue dots). The corresponding nine runoff
characteristics, denoted as R99,o, R95,o, R90,o, R80,o, R50,o, R20,o, R10,o, R5,o, R1,o, respectively, are used as
reference points for adjustment (red dots). To use the sparse reference information, the ratio correction
factor Ci is calculated (equation (1)) at all available reference points. Assuming the intermediate ratio correc-
tion factors (Cij) between Ci and Ci+1 follow a loglinear relationship (where j and N stand for the jth point
and the total number of points between i and i+1, respectively; i+1stands for the next available runoff
characteristics), Cij can be written as equation (2). For modeled runoff values (Rm) greater than R1,o and
those less than R99,o, a simple extrapolation technique is applied by taking the correction factor as C99 and
C1. The bias‐corrected values are eventually computed by multiplying the original runoff time series by
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Cij. To avoid some rare cases of extremely large values (i.e., large model and observation mismatch seen in
runoff values at 99% exceedance probability at ~4% of the cells), Cij is capped at 1,000 after trial‐and‐error to
ensure the corrected values are within a realistic range. The BCmethod is implemented using Python script-
ing; it is referred as “sparse CDF matching” and made available at https://github.com/peironglinlin/
GlobalHydro/.

Ci ¼ Ri;o=Ri;m (1)

Cij ¼
Ci

1−j=N ·Ciþ1
j=N ; if R99;o<Rm<R1;o

C99; if Rm≤R99;o

C1; if Rm≥R1;o

8><
>: (2)

2.3. Vectorizing River Network and Unit Catchment from MERIT Hydro: MERIT Basins

Several preexisting global hydrography data sets (e.g., Lehner et al., 2006; Wu et al., 2012) can be used as the
global routing data infrastructure. However, these data either lack coverages above 60°N (thus lacking
arctic river basins), or their underlying DEM accuracy is limited in depicting realistic river planform geome-
try. In this study, we vectorize river flowlines and unit catchments from Multi‐Error‐Removed‐Improved‐
Terrain (MERIT) Hydro, a recently developed high‐accuracy raster hydrography data (Yamazaki et al.,
2019). The MERIT Hydro was based on MERIT DEM at 3‐arcsec (~90 m) resolution, which is an advanced
high‐accuracy global DEM recently created by Yamazaki et al. (2017). MERIT Hydro precisely
represents river networks as raster flow direction and flow accumulation from this DEM, providing a reliable
hydrography at 3 arc‐second resolution with the full global coverage (60°S to 90°N). In order to tailor the
MERIT Hydro for the modeling purpose that separates global basins, a few preprocessing steps are con-
ducted. First, the Pfafstetter Level‐2 basin polygons from HydroBASINS (https://hydrosheds.org/images/
inpages/HydroBASINS_TechDoc_v1c.pdf) are used to roughly divide the MERIT Hydro basins, because
HydroBASINS jointly considers topographic controls and groundwater connections for its basin delineation
(Lehner, 2014), providing a reasonable reference and coding protocol for hydrologic modeling. As MERIT
Hydro provides data in 10°×10° tiles, for each basin, all intersectingMERIT tiles are first mosaiced as a single
raster with sufficient buffer, where a 25 km2 channelization threshold is applied. Then, the vector flowlines
and catchments are extracted from the 61 buffered mosaics by implementing TauDEM (http://hydrology.
usu.edu/taudem/taudem5/index.html) with Princeton high‐performance computing to deal with the huge

Figure 2. Schematics of the newly developed bias correction approach. Stars mark the grid cell under bias correction:
dynamic LSM runoff time series are used for cumulative density function construction (blue line) and static runoff
characteristics maps are used as the reference (red points). LSM = land surface model.
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demand for computer memory. The resulting buffered data is then trimmed within Level‐2 basin boundaries
by (1) locating the most downstream reaches within the HydroBASINS boundaries, (2) back‐tracing their
contributing areas, and (3) redefining Level‐2 boundaries. Globally, there is less than 1% difference between
MERITHydro andHydroBASINS Level‐2 basin boundaries on average; the final basin boundary is redefined
based on MERIT Hydro. The vectorized hydrography (flowlines and unit catchments) within separated
basin boundaries are referred as MERIT Basins v0.1 for future use. The 61 level‐2 MERIT Basins are further
merged into nine Level‐1 continents (i.e., Africa, Europe, Siberia, Asia, Australia, South America, North
America, Arctic of North America, and Greenland) for RAPID routing. See http://hydrology.princeton.
edu/data/mpan/MERIT_Basins/ for more details and access of the MERIT Basins shapefiles derived in this
study. It is worth noting that the median (mean) reach length is 6.8 km (9.2 km) and the unit catchment size
is 36.8 km2 (45.6 km2). Although the routing algorithm adopted here (Muskingum) is of relatively low com-
plexity, the underlying data infrastructure represents significantly improved accuracy and resolution for
channel representation compared to existing global river modeling studies (e.g., Li et al., 2013; Renssen &
Knoop, 2000; Sutanudjaja et al., 2018; Yamazaki et al., 2011). A visual comparison between the vector hydro-
graphy and the Google Map Images also suggest that the channel depictions are realistic enough to support
locally relevant applications. In the future, the routing method can be updated with variable coefficient
Muskingum‐Cunge (Lin, Hopper, et al., 2018) or other more advanced algorithms to further improve the
surface water routing module.

2.4. Observational Data and Skill Metrics for Model Evaluation

To evaluate the simulated discharge, we use daily streamflow observations obtained from a global database
we compiled from multiple national and international sources (see Acknowledgements for more details),
which covers >17,000 gauges globally (Figure 3). Not surprisingly, these data are unevenly distributed with
richer data in developed countries than other parts of the world (Figure 3a). Due to inconsistent data collec-
tion and sharing policies, these data also differ significantly in total record length and data quality (e.g., the
U.S. Geological Survey uses “quality tags” to informmeasurements quality while others do not andmay con-
tain poor data). Nevertheless, to make the most use of the data to reveal the model performance to the max-
imum spatial extent possible, over 14,000 gauges with more than 3 years of data (not necessarily consecutive)
are used for model validation. The gauges are snapped onto the MERIT Basins flowlines with a “spatial join”
analysis—gauges located >500 m from its closest reach are considered to have poor coordinate information
and are eliminated from evaluation (lowering the snapping threshold may more accurately locate gauges for
small reaches, but we found very few wrong locations when comparing the gauges' documented drainage
areas with the reaches' calculated areas, so it is adopted to retain more gauges in a consistent manner).

To further classify the gauges into those influenced by lakes or dam regulations and those located in natur-
alized basins with no lake or dam impacts, the Global Reservoir and Dam point data set (GRanD v1.01,
http://sedac.ciesin.columbia.edu/data/set/grand‐v1‐dams‐rev01) and the HydroLAKES polygon data set
(Messager et al., 2016) are used as the ancillary data. GRanD compiles 6,862 dams globally and
HydroLAKES compiles 1.4 million natural lakes. We delineate the upstream drainage basins of all gauges
and intersect them with the ancillary data–this determines how many GRanD dams (Figure 3b) and
HydroLAKES natural lakes (Figure 3c) are located in the drainage basin of each gauge. The gauges are thus
separated into three groups: (1) naturalized gauges with no influences from lakes/dams (11,313), (2) gauges
influenced by reservoir regulations (2,073), and (3) gauges with influence from lakes (6,316). Geographically,
gauges with large numbers of upstream dams are mostly located in large rivers with higher Strahler stream
orders, corresponding to the places that have the most human impacts (Figure 3b). Gauges with large num-
bers of upstream natural lakes (Figure 3c) are located in the tropics (due to large precipitation inputs) as well
as the high‐latitude river basins (due to lake formation during the glacial‐interglacial geologic cycles).

These gauges cover the full spectrum of stream orders (Figure 4a), and they also range greatly in drainage
basin size (see Figure 4b)—the median and mean of the drainage area sizes are 965.1 km2 and 18,613.9
km2, respectively. Since this study uses a highly accurate hydrography derived from the 90‐mDEM for river
routing, we are able to include gauges located in headwater streams with very small drainage basins (e.g.,
22% of the gauges have a drainage area of <250 km2) in the model evaluation. This is in contrast to previous
global studies that mainly performed their evaluation for large drainage basins (Decharme et al., 2010; Li
et al., 2013). The inclusion of all gauges in the evaluation poses more challenges toward the
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“hyperresolution” goal of any global river modeling framework, and thus both excellent and poor
simulations are expected at the scale the model is assessed.

To comprehensively evaluate the model, the Kling‐Gupta Efficiency (KGE, equation (3)) and its component
statistics including correlation coefficient (CC, equation (4)), bias ratio (BR, equation (5)), and relative

Figure 4. Histogram of (a) stream order and (b) drainage basin area (km2) of the gauges shown in Figure 3a.

Figure 3. Global stream gauges used in model evaluation from (a) different gauge networks. Gauges are classified
based on if they are influenced by (b) dams and (c) lakes or not. If influenced by dams/lakes, colors show the number of
dams/lakes upstream. USGS = U.S. Geological Survey; GRDC = Global Runoff Data Centre.
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variability (RV, equation (6)) are calculated at both daily and monthly time scales. In the equations, Qm and
Qo denote modeled and observed discharge, respectively; σQm

and σQo
denote standard deviation of the mod-

eled and observed discharge, respectively. KGE measures the Euclidean distance between a point and the
optimal point that has CC = 1, BR = 1, and RV = 1 (Gupta et al., 2009; Kling et al., 2012). Therefore, it is
an integrated skill metric to jointly consider the modeled time series covariability with the observation,
the model bias, and the model standard error, and is widely used in evaluating environmental models
(Gupta et al., 2009). Any approach that attempts to maximize the KGE is a multiobjective calibration process
that simultaneously optimizes CC, BR, and RV. In the following sections, we purposefully do not differenti-
ate gauges influenced by water management and those gauges located in naturalized basins in the spatial
plot analyses (sections 3.1–3.3); a closer look at the influence from reservoirs/lakes, drainage basin area,
and climatic aridity index will be separately conducted through boxplot analyses in section 3.4.

KGE ¼ 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CC−1ð Þ2 þ BR−1ð Þ2 þ RV−1ð Þ2

q
(3)

CC ¼ cov Qm;Qoð Þ
σQm

·σQo

(4)

BR ¼ Qm=Qo (5)

RV ¼ σQm
=Qm

� �
= σQo

=Qo

� �
(6)

3. Results
3.1. Baseline Model Simulation Performance

Figure 5 shows the geographic distribution of the CC, percentage bias (PBIAS = (Qm−QoÞ=Qo×100%), RV,
and KGE skill metrics. Overall, the model shows better performance in humid regions than dry regions. The
monthly statistics (right column) are better than the daily KGE scores (left column)—the difference is
mainly a result of the CC difference, suggesting daily flow dynamics are less well captured than monthly
flows. This is partly related to the difficulty for the forcing to capture the dynamic daily precipitation varia-
bility, and partly due to the use of the simple Muskingum routingmethod that cannot fully resolve daily flow
variations. Solving the full Saint‐Venant equations may improve the simulation of the daily flow fluctua-
tions, but the performance will still depend on the channel geometry parameterizations required by the
hydrodynamic equations. For the purpose of providing a priori information for SWOT, however, we consider
the relatively simple routing scheme sufficient because themonthly and climatological flow is of the primary
focus in this study. Over majority global land areas, CC is in the range of 0.6 to 1 (monthly) and 0.4 to 0.8
(daily) except for a few complex‐terrain areas such as Chile, the Alps, and the central to western United
States. Such a result is generally better than those when evaluating ten state‐of‐the‐art hydrologic models
for discharge modeling (Beck et al., 2017). Compared to CC, the model bias problem is more pronounced,
and only 24.2% of the gauges have a PBIAS within ±20%—not knowing the observational data quality
(Kiang et al., 2018), a PBIAS within ±20% is used to delineate geographic locations showing very goodmodel
performances. For the mostly dry central United States, Africa, and Australia, the model exhibits >100%
PBIAS (blue color); this problem is general in a couple of other LSMs as well (e.g., Xia et al., 2012). For
the western United States, Europe, and eastern Asia, the model slightly underpredicts runoff (see red colors
for the negative model biases). The biases cause unsatisfactory KGEs in both daily and monthly simulations
(i.e., white dots with negative KGEs; Figures 5g and 5h), and they need to be resolved before the database can
be used in serving other hydrologic applications, as performed here and discussed next.

3.2. Grid‐by‐Grid BC Against Runoff Characteristics

To deal with the model biases, the sparse CDF matching introduced in section 2.2 is implemented at all
~0.24 million VIC grid cells. Figure 6 illustrates the BC effectiveness by showing the runoff time series
and the CDF changes before (blue) and after the correction (orange) at seven example grid cells. These cells
exhibit different types of bias problems. Regions with over‐predicted runoff problems, such as central United
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States (A), Africa (B), and Australia (C), have seen lowered runoff after BC (Figures 6a–6c). BC reduces the
positive biases because the runoff signatures above Q50 estimated by ML are much lower than the model
simulation (Figures 6a–6c). Over regions with underpredicted runoff such as Europe (D) and eastern Asia
(E, red dots in the original bias map), runoff time series are corrected to match the systematically higher
Qc estimates (Figures 6d and 6e). For regions where the model originally shows good model performances
such as the eastern United States (F) and the Amazon River basin (G, see yellow dots in Figures 6f and
6g), the influence of BC is minimal particularly on the mean/median flows (i.e., very little change in flows
around Q50 before and after BC). This suggests the VIC LSM and the ML‐derived Qc maps provide similar
mean/median runoff estimates over these areas, which implies it is generally less challenging to understand
the hydrology there. Note that the BC approach is not only effective in addressing systematic model biases
such as Point A through Point E but also able to adjust different runoff percentiles by lowering high flows
and increasing low flows (e.g., Point F and Point G, where the fourth and third last reference points, respec-
tively, are break points to deviate from model‐simulated low flows and high flows). The log‐linear assump-
tion (equation (2)) avoids the sudden change in the ratio correction factors, which leads to the overall
smooth corrections of the CDF in matching the ML‐derived Qc maps. A global difference map before and
after BC is shown in Figure S4.

Figure 5. Global streamflow modeling evaluated against over 14,000 gauges (left column: daily; right column: monthly). Results shown are correlation coefficient
(a, b), percentage bias (c, d), relative variability (e, f), and the Kling‐Gupta Efficiency (g, h). Note the CC plot has a range of 0 to 1 because only ~1% of gauges have
negative CC; the PBIAS plot has asymmetric ranges because of its definition that can result into asymmetric values for dry and wet biases. CC = correlation
coefficient; RV = relative variability; KGE = Kling‐Gupta Efficiency; PBIAS = percentage bias.
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3.3. Global Streamflow Simulation After BC

To further evaluate the BC effectiveness, the corrected runoff is routed with RAPID and the resultant model
performance is shown in Figure 7. Among all gauges, now 35% have a PBIAS within ±20% (yellow dots in
Figures 7c and 7d), and 29% (62%) have a monthly KGE greater than 0.6 (0.2). The best KGEs are seen over
the eastern United States, South America, Europe, and eastern Asia, all generally humid regions, while the
model still struggles to produce satisfactory KGEs for central United States, eastern South America, parts of
Africa, and Australia (see white dots in KGE plot). The negative KGEs are partly related to the runoff biases
still present after BC (Figures 7c and 7d), and partly related to the consistently low CC (Figures 7a and 7b)
that cannot be adjusted unless better flow dynamics are simulated using better precipitation forcing or
updated routing methods. It is noteworthy that these spatial plots do not differentiate gauges influenced
by lakes/reservoirs and those with small drainage basins (or very small, narrow rivers). Thus, gauges whose
mean flow and flow dynamics are by nature difficult to simulate in a perfect sense have not been screened
out, and the aim is to reveal, to the maximum extent possible, the capabilities and limitations with the pre-
sented model. These issues are not expected to be resolved by the proposed BC approach and will need to be
addressed using improved‐accuracy precipitation inputs, and/or well‐represented and calibrated water
management modules, which is not yet available to the framework. These are also the places where RS
observations like those from SWOT may make a contribution by providing new primary data and indepen-
dent estimates of the river flow. Problems associated with the Qc maps (Beck et al., 2015) may also impede a
perfect skill improvement everywhere, for example, the bias can be increased at certain gauges (see next
section). Future studies are warranted to refine the data/methods/models by addressing the above‐
mentioned issues. Nevertheless, given the availability of high‐quality global data sets and limited informa-
tion in ungauged basins, the improvements across a large spatial scale after the proposed BC still
demonstrate promising results, upon which future refinements could be conducted.

Figure 6. Effectiveness of the bias correction approach against nine runoff characteristics. The spatial plot shows the
percentage bias (%) of the original model simulation; (a)–(g) show the CDF and time series change before (blue) and
after bias correction (orange) at seven example grid cells. For clarity, only the runoff time series for Year 1979 are shown.
CDF = cumulative density function.
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Figure 7. The same as Figure 5, but for the simulation performance after bias correction.

Figure 8. Histogram of the (a) CC, (b) PBIAS, (c) RV, and (d) KGE skill changes before (blue) and after BC (red bars) for
the monthly simulation. CC = correlation coefficient; RV = relative variability; KGE = Kling‐Gupta Efficiency;
PBIAS = percentage bias; BC = bias correction.
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The bulk statistics for the 14,000 gauges (Figure 8) show that BC is able to increase the number of gauges that
have a PBIAS within ±20% by 11% (Figure 8b), while shifting the peak KGE to 0.6–0.7 (red bars) from 0.4–0.5
previously (blue bars) in Figure 8d. CC is barely changed (Figure 8a) and gauges with RV between 0.8 and 1.2
are also increased (Figure 8c). Despite the promising improvements, there are still gauges consistently show-
ing negative KGEs (although less after BC). These are mostly for extremely dry rivers (see section 3.4), where
a slight overestimation by the model (e.g., 0.1 mm) would easily produce a large percentage error. Hence,
although BC is able to reduce the absolute amount of the overestimated runoff amount (e.g., Figures 6a–
6c), the remaining bias still takes up a large percentage, resulting into negative KGEs. There is also a ten-
dency for BC to shift the PBIAS to the higher end (Figure 8b), which implies that the ML‐derived Qc maps
provide consistently higher mean runoff estimates than the model (although not at the highest end), which
is a place needing refinements in the future. The fact that the model is not representing transmission loss in
dry regions can also partly explain the stubborn bias. In addition, water management activities such as diver-
sions and irrigations are neither parameterized by the model nor implicitly incorporated in the Qc maps
(only naturalized flows were used for ML training; see Beck et al., 2015). Therefore, room is left for further
improvements in future studies.

3.4. Dam Regulation, Lake Impacts, Drainage Basin Area, and Aridity Index

To better understand the spatially explicit model performance, this section presents more analyses that
differentiate the evaluation gauges based on whether or not they have dam/lake impacts, their drainage
basin size, and their climate aridity.

In the “no BC” experiment, whether or not a gauge has upstream natural lakes only minimally influences
the model performance (i.e., no significant difference between left and right groups of Figure 9b). The exis-
tence of dams (Figure 9a), on the other hand, is slightly more influential as can be seen from the higher med-
ian PBIAS and RV in the “With dams” group and the slightly higher (narrower) KGEs in the “No dams”
group (green boxes in Figure 9a). This suggests that dams are more effective in altering flow dynamics than
natural lakes, which is because natural lakes (especially small ones) can behave like wide river channels
while dams are usually regulated by humans to counteract natural flow variability. Consequently, the cur-
rent routing model might benefit more from incorporating a well‐represented and calibrated global
dams/reservoirs scheme compared to adding a scheme for lake processes. After BC, we see the model perfor-
mance differences between gauges with and without the influence from lakes or dams both become less pro-
minent (blue boxes in Figure 9) with improved model performance. This indicates that BC is able to reduce
some biases resulted from the underrepresented lakes/reservoirs in the routing model. Overall, the

Figure 9. Boxplot of the model performance statistics based on (a) dam regulation and (b) lake impacts. The left (right)
column in each plot shows gauges with (without) the influence from dams or lakes. Statistics for experiment with no
BC and that with BC are shown in green and blue boxes, respectively. CC = correlation coefficient; RV = relative
variability; KGE = Kling‐Gupta Efficiency; PBIAS = percentage bias; BC = bias correction.
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difference between gauges with and without upstream lakes/reservoirs is surprisingly less prominent than
expected. This may be partly related to the fine scale at which the model is assessed, which makes other
existing problems more outstanding than the lack of reservoir or lake schemes (as will be discussed
below). It may also be partly ascribed to the uncertainty in the dams/lakes datasets used for the analyses,
for example, GRanD only accounts for large dams, but recent studies suggested that those small yet much
more widespread reservoirs, especially small farm dams to draw water from rivers for irrigation, can have
a strong cumulative impact on hydrology (Habets et al., 2018). In addition, our analyses did not account
for distance between the dams/lakes and the gauges. These issues will need to be more carefully
investigated in the future with improved data sets.

We next show the model performance as a function of the drainage basin size and the climate aridity
(Figure 10). In the BC experiment, the median KGE slightly increases with drainage size for basins smaller
than 5,000–10,000 km2, which is because the model errors of various sources tend to be canceled out as the
drainage basins aggregate in size (Cunha et al., 2012; Lin, Yang, et al., 2018). The median KGE becomes
slightly lower for basins greater than 10,000 km2, which is most likely related to the dam existence that
makes the model to produce high‐biased flows (Figure 10a, PBIAS) and flow variabilities (lower CC, higher
RV in Figure 10a); note that the lower KGEs are more obvious for no BC experiment for drainage areas
greater than 5,000 km2. Among all factors analyzed (i.e., lakes, dams, drainage area, and aridity), the most
pronounced challenge for the model simulation lies in the dry region runoff prediction (Figure 10b), where
both the flow dynamics (median CC < 0.5, median RV > 1.5) and the mean flow (median PBIAS > 100%) are
difficult to resolve compared to humid regions (median CC > 0.6, median PBIAS < 20%, median KGE > 0.5).
This problem, although alleviated after BC (Figure 10b), is still the most outstanding issue. These results can
be used to prioritize, among many potential pathways for model improvements, the most important tasks as
the immediate next step. Here we suggest to largely improve the geographically distributed model perfor-
mance, future studies tailored to dry regions are critical. For the purpose of providing a priori river flow
information for SWOT, however, this may be less of an issue because most dry region rivers will be not obser-
vable from SWOT (section 3.5).

3.5. Potential Applications to the SWOT Mission

As mentioned in section 1, SWOT discharge estimates will be computed using simple flow laws such as
Manning's equation where some terms in the equation are directly observable, and some parameters (e.g.,
river bathymetry and friction parameter) are not observable. Thus, the inversions are often ill posed and will
rely upon an a priori estimate of river flows. Our presented 35‐year model‐estimated river discharge would
provide one such estimate of a priori river flow, to help constrain the inversion algorithms. In this section,
we cast our results in terms of SWOT‐observable reaches to demonstrate the potential application of the

Figure 10. Same as Figure 9, but for (a, left) drainage area and (b, right) aridity.
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final data record. Note that SWOT will only observe rivers wider than 100 m, with a target of 50 m (Pavelsky
et al., 2014), which is a subset of the spatiotemporally continuous global discharge record presented in this
study. We use a new observation‐based global river width data set—the Global River Widths from Landsat
(GRWL) database (Allen & Pavelsky, 2018) to determine which modeled reaches can be seen by SWOT.
GRWL used over 7,000 Landsat scenes to calculate channel widths for reaches wider than 30 m (i.e., the
Landsat pixel resolution) at their mean annual discharge. It provides >58 million width measurements
orthogonal to the Landsat centerlines. To map these “cross‐sectional” widths onto the MERIT Basins
reaches (median length 6.8 km), geospatial analyses are performed by (1) spatially joining GRWL point
measurements with the flowlines (excluding measurements located >100 m away from its closest
flowline), (2) excluding GRWL measurements tagged with lakes, reservoirs, and multiple channels, and
(3) calculating the reach‐averaged widths only if a MERIT reach has more than 10 GRWL measurements
to reduce possible noisy data. The MERIT Basins flowlines are then enhanced with width measurements
informed from GRWL. The spatial patterns of the global reach‐based “effective” river widths and the
mean annual discharge computed from the best modeling experiments from this study are shown in
Figure 11.

For all river reaches potentially observable from SWOT taking up 8.8% of our modeling database
(Figure 11a), the newly reconstructed flow record shows even better statistics as evaluated against ~4,000
gauges: 44% (76%) of them have a PBIAS within ±20% (±50%), and 42% (75%) have a monthly KGE greater
than 0.6 (0.2). This gives us confidence in using the model‐derived flow characteristics such as mean annual
discharge (Figure 11b) in a range of established SWOT discharge algorithms (e.g., those in Durand et al.,
2016; Hagemann et al., 2017). Since this modeling database involves the flow duration curve across the
35‐year time span, it can also provide flow uncertainty needed by some algorithms, or it can be extended
to ingest multi‐LSMs, multiple forcings, and parameter perturbations in the future for more rigorous flow
uncertainty estimation. Daily, monthly, and seasonally varying flow estimates may also be used to improve
the SWOT discharge accuracy, beyond the static QMEAN currently used (Durand et al., 2016)—Figure S5

Figure 11. (a) The global river width and (b) the Variable Infiltration Capacity‐Routing Application for Parallel
computatIon of Discharge‐simulated mean annual discharge for the river reaches observable by SWOT (width >50 m,
as determined using GRWL)—there are 211,968 such reaches, taking up 8.8% of the total modeled reaches. Cross‐sectional
width measurements are obtained from the GRWL database (Allen & Pavelsky, 2018) and are averaged over the Multi‐
Error‐Removed‐Improved‐Terrain reaches, excluding measurements with lake/reservoir tags and multichannels. Note
that SWOTwill not observe a handful of reaches north of 78°N, but they are not differentiated here. GRWL=Global River
Widths from Landsat; SWOT = Surface Water and Ocean Topography.
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shows the model performance statistics as separated by season. Newly developed discharge estimationmeth-
ods such as Bjerklie et al. (2018) rely on flow quantiles, e.g., discharge with a 2‐year recurrence interval as an
approximation for bankfull discharge, which can also be directly calculated from our presented database.
Overall, the updated framework/methodology shows robustness in estimating global river flows “every-
where and locally relevant,” synthesizing the most recent advancements in precipitation merging, LSM cali-
bration, LSMBC, and hydrography developments (section 2.1). Moreover, it addresses the fine‐scale channel
depiction needs as required by the SWOT satellite mission and biogeochemical applications (Downing,
2012). Together with the spatially‐explicit accuracy assessment as shown in Figure 7, we expect the database
to be used by RS and modeling groups in an iterative manner in the future, that is, hydrologic modeling pro-
vides updated initial estimates to improve RS estimates and RS provides constraints to update the modeling
parameters and simulations through data assimilation, to jointly improve our quantification of the global
river flow dynamics.

Lastly, it is also interesting to note the reach‐averaged width pattern in Figure 11a shows some deviations
from another reach‐based global river width database derived from the traditional downstream‐hydraulic‐
geometry (DHG) approach (Andreadis et al., 2013). This implies that the simplified DHG theory may be
inadequate at the scale of the state‐of‐the‐art RS and modeling (i.e., 30 to 90 m), as was also discussed by
Allen and Pavelsky (2018). Using the updated global discharge database and the newly available global river
width data set, the DHG theory can be revisited, similar to a recent study by Frasson et al. (2019), but with
improved water balance accounting and covering rivers beyond 60°N. Updating the theoretical understand-
ing of DHG, or adopting different geomorphological paradigms, may potentially further our understanding
of the spatial variability of global river widths.

4. Conclusions and Discussions

This study presents a carefully designed modeling effort for global river discharge simulation at unprece-
dented 2.94 million reaches. To constrain the simulation as much as possible, we (1) utilize a newly
developed 0.1° global precipitation dataset that optimally merged a range of global gauge‐, satellite‐,
reanalysis‐based data sets, (2) conduct grid‐by‐grid (instead of basin‐by‐basin) VICmodel parameter calibra-
tion, (3) bias‐correct the runoff simulation with a newly proposed “sparse CDF matching” approach, and (4)
extract vector river flowlines from the high‐accuracy 90‐m global MERIT DEM covering 60°N and above
(our resulting vector hydrography is named “MERIT Basins”) for river routing. The 35‐year daily and
monthly model simulation (1979 to 2014) are comprehensively evaluated against >14,000 gauges globally
covering the full spectrum of stream orders, results of which demonstrates the robustness and high‐accuracy
of the data record for use in SWOT and other hydrologic applications—the new flow record is named
“Global Reach‐Level A Priori Discharge Estimates for SWOT (GRADES).” “MERIT Basins” and
“GRADES” will be made publicly available for research purposes at http://hydrology.princeton.edu/data/
mpan/MERIT_Basins/ and http://hydrology.princeton.edu/data/mpan/GRADES/.

Despite the promise of the newly reconstructed global river flow records, we believe there are still several
areas where future refinements can be conducted. First, as presented in the Results section, the modeling
performance can still benefit from improving the dry region simulations, adding reservoir regulation
modules, updating the routing method with advanced algorithms, and adding modules for lake processes
(the order of appearance reflects the modeling priority in future work). Second, although our goal is to esti-
mate river flows across the full spectrum of stream orders and this goal is better approached compared to
previous global modeling studies, many headwater streams important for freshwater biogeochemical
cycling (Benstead & Leigh, 2012) may still not be explicitly modeled. Flow estimation for those headwater
streams will need to be made possible with future advancements in global LSM and DEM at higher spatial
resolutions, combined with insights gained via new in situ observations (Allen, Pavelsky, et al., 2018).
Third, the Qc maps used for BC and model calibration contain some “observational information” from a
small subset of the final evaluation gauges, and they are assumed as the reference despite these maps are
not free from errors (Beck et al., 2015). Future work may revise this assumption in order to achieve
additional skill increment on top of the BC method presented. Finally, local errors may still be present,
but we do not aim to address these issues unless other high‐quality global datasets become available to
serve as the reference. Future improvements could benefit from in‐depth analyses of the uncertainty
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with runoff characteristics maps (Beck et al., 2013, 2015), the model performance in arid regions (Newman
et al., 2015; Parajka et al., 2013; Pilgrim et al., 1988; Ye et al., 1997), and the precipitation forcing uncer-
tainty (Alijanian et al., 2017; Beck et al., 2017, 2019; Satgé et al., 2019). Based upon the reconstructed nat-
uralized river flows presented in this study, we expect future iterative efforts between modeling and RS
groups, that is, updated models provide better a priori flow information to the RS and RS provides con-
straints to the model parameters and simulations through data assimilation, to jointly improve our quanti-
fication of the global river flows.
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